Расчет течений газа при наличии энергообмена
l2=0,29825
l2=3,35295
Реальным будет только первое решение, поскольку подогревом нельзя перевести дозвуковой поток в сверхзвуковой. Зная коэффициент скорости мы можем найти скорость , этому коэффициенту соответствующую:
м/сек.
(6)
где по уравнению расхода
(7)
s-коэффициент восстановления полного давления. p-газодинамическая функция. B1G и B2G здесь постоянные .
(8)
Вычисляем B1G и B2G по формуле (8):
B1G=0,3937 и B2G=0,3868.Найдем значения qk=1.4(l1) , qk=1,33(l2) , pл=1,4(l1), и pл=1,4(l1) по таблицам газодинамических функций: qk=1.4(l1)=0,2036 , qk=1,33(l2)=0,4443, pл=1,4(l1)=0,9886, pл=1,4(l1) =0,9496.Подставим все найденные значения в формулы (6),(7) и (8).Найдем из формулы (6) р2: р2=9,0126 ата.
Ответ:V2=210.54 м/сек, р2=9,0126 ата.
II задача. (Давидсон В. Е. Основы газовой динамики в задачах. Задача№170 ).
Постановка задачи:
Сделать одномерный расчет степени подогрева , скорости воздуха и поперечных размеров для полутеплового сопла (тепловое воздействие на дозвуковую часть потока в цилиндрической трубе, геометрическое—на сверхзвуковую) по следующим данным: до подогрева в камере температура торможения Т01=2890 К, давление торможения р01=20 ата, скорость потока V1=62,2 м/сек, секундный весовой расход воздуха через сопло Gt=9 кг/сек, истечение расчетное в атмосферу при давлении ра=1,03 ата. Определить тягу сопла R.
Решение задачи:
В конце камеры подогрева воздух должен иметь критическую скорость . м/сек. При известной критической скорости и начальной скорости на входе в цилиндрическую часть сопла можно вычислить l1. l1-коэффициент скорости на входе в трубу. l1=V/akp=0.1999. Т.к. в конце трубы воздух имеет критическую скорость, l на выходе из трубы-l2=1. По теореме сохранения полного импульса
,
в цилиндрической частиИз этой формулы находим температуру торможения на выходе из трубы:Т02=19550 К При известной температуре торможения можем найти скорость воздуха на выходе из цилиндрической части сопла: V2=809.24 м/сек. Та же теорема ,выраженная через газодинамическую функцию f(l), дает коэффициент восстановления полного давления s==0,8066. Уравнение p(lа)=определяет коэффициент скорости в конце расширяющейся части сопла lа и , следовательно ,. p(lа)=0,0638. По газодинамическим таблицам находим значение lа=1,81.Найдем скорость потока Vа=1464м/сек. Площадь поперечного сечения можно найти по формуле ,
=0,00198 м2 .Fц - площадь поперечного сечения дозвуковой части сопла. Отсюда диаметр сечения дозвуковой части сопла: dц=88 мм. q(la)=0.3965. Fa - площадь поперечного сечения сверхзвуковой части сопла.
Fa=0,0049936м2. Диаметр сечения сверхзвуковой части сопла: dа=135мм. Тягу сопла найдем по уравнению импульсов в форме .
R=2154 H.
Ответ: Т02=19550 К V2=809.24 м/сек ,Vа=1464м/сек ,dц=88 мм, dа=135мм,R=2154Н
Список использованной литературы:
1) Давидсон В. Е. “Основы газовой динамики в задачах”. Издательство “Высшая школа” Москва-1965г,
2) Г.Н.Абрамович “Прикладная газовая динамика”. Издательство “Наука” Москва-1976г.
Перейти на страницу: 1 2