Бозе-Эйнштейновский конденсат
Спин электрона и принцип запрета Паули. В то время, когда формировались идеи квантовой механики, для объяснения характеристик линейчатых спектров атомов была выдвинута гипотеза спина электрона. Спектроскопия более высокого разрешения показала, что многие линии представляют собой дублеты, которые не удается объяснить, исходя из орбитального движения электронов. Особенно показательный пример – дублет желтых линий натрия 589,0 и 589,6 нм, который четко разделяется даже простыми спектрометрическими приборами. Для объяснения частого появления дублетов в линейчатых спектрах Дж.Уленбек (1900–1988) и С.Гаудсмит (1902–1978) выдвинули в 1925 предположение, что электрон имеет собственный момент импульса, или спин, т.е. его можно представить себе вращающимся вокруг собственной оси одновременно с вращением по орбите вокруг ядра, аналогично вращению Земли при ее движении вокруг Солнца. Спин характеризуется еще одним квантовым числом, s. Поскольку вектор спинового момента импульса имеет (2s + 1) различных ориентаций, а наблюдаемая кратность энергетических уровней равна двум, имеем (2s + 1) = 2, или s = 1/2. Проекции вектора s на некое выделенное направление (направление внешнего магнитного поля) характеризуются спиновым магнитным квантовым числом ms, которое может быть равно либо +1/2, либо -1/2. Вращающийся вокруг собственной оси электрон подобен крошечному магниту с магнитным моментом В конечном итоге получается 4 независимых квантовых числа, характеризующих состояние электрона в атоме: n – главное квантовое число; l – орбитальное квантовое число; ml – орбитальное магнитное квантовое число; ms – спиновое магнитное квантовое число. Хотя квантовая механика позволяет, если заданы квантовые числа, определить энергию состояния и пространственное распределение электронной плотности вероятностей (заменяющее орбиты в модели Бора), для фиксации числа электронов в каждом состоянии требуются дальнейшие предположения. В 1925 В.Паули (1900–1958) сформулировал «принцип запрета», который сразу внес ясность в очень многие атомные явления. Он предложил простое правило: в каждом отдельном квантовом состоянии может находиться только один электрон. Это означает, что набор чисел, отвечающих данным n, l и ml, зависит от n. Например, при n = 1 возможно лишь l = 0; следовательно, ml = 0 и единственное различие состояний связано с ms = +1/2 и -1/2. В таблице приведены возможности, отвечающие различным n. Отметим, что в первой «оболочке» (n = 1) имеются 2 электрона, в следующей оболочке (n = 2) имеется 8 электронов, образующих две подоболочки, и т.д. Максимальное число электронов в подоболочке равно 2(2l + 1), а максимальное число подоболочек составляет n. Для каждого n полностью заполненная оболочка содержит 2n2 электронов. Соответствие принципа Паули эксперименту было подтверждено огромным числом спектроскопических наблюдений, а также многочисленными данными электронной теории металлов, физики ядерных процессов, низкотемпературных явлений. Это один из наиболее фундаментальных объединяющих принципов физики, открывший путь к пониманию электронной структуры сложных атомов. Правда, принципом Паули определяется лишь возможность заполнения различных электронных оболочек, а для проверки фактического заполнения тех или иных состояний необходимы данные, полученные на основе оптических и рентгеновских спектров. Но в атомах вплоть до аргона с Z = 18 каждый дополнительный электрон просто добавляется в низшую из незаполненных подоболочек. Отступления от этого порядка наблюдаются у более сложных атомов, оболочки которых частично перекрываются. Квантовая механика объясняет это отступление тем, что в первую очередь заполняются состояния с самой низкой энергией. Детальный анализ электронной структуры и распределения электронов с точки зрения квантовой механики и принципа Паули в более тяжелых атомах весьма сложен. Для состояния 1s (n = 1, l = 0) возможно только сферически симметричное распределение (причем наиболее вероятным оказывается положение электрона в центре атома). В состоянии 2p (n = 2, l = 1) момент импульса электрона уже не равен нулю, и поэтому масимум плотности находится на ненулевом расстоянии от ядра. Распределение электронной плотности зависит от квантового числа ml в соответствии с требованием квантования компонент момента импульса вдоль направления магнитного поля.
СВЕРХТЕКУЧЕСТЬ, уникальное состояние жидкости, возникающее в гелии при очень низких температурах. Сверхтекучая жидкость отличается от обычных жидкостей тем, что ее вязкость равна нулю. Она может протекать через тончайшие капилляры без всякого сопротивления. Необычные свойства сверхтекучей жидкости объясняются тем, что поведение жидкости в целом определяется законами квантовой механики. Два изотопа гелия – жидкий 3Не и жидкий 4Не – это единственные жидкости, которые становятся сверхтекучими при низких температурах (атом 3Не имеет такие же химические свойства, как и атом 4Не, но в его ядре одним нейтроном меньше). Сверхтекучий 4Не. Жидкий 4Не, который впервые был получен в 1908, имеет температуру кипения 4,2 К (нуль абсолютной термодинамической шкалы соответствует температуре –273,16° С). Откачивая пар над поверхностью жидкого гелия, можно понизить температуру жидкости примерно до 1 К. В 1930 ученые обратили внимание на то, что при охлаждении жидкого гелия ниже 2,17 К резко меняются многие его свойства. Наиболее заметным изменением является прекращение кипения, указывающее на резкое увеличение теплопроводности. Теплоемкость тоже резко увеличивается, а вязкость, измеренная в тонких капиллярных трубках, падает до нуля. Все это показывает, что в жидком 4Не при температуре ниже 2,17 К происходит фазовый переход в сверхтекучее состояние. Двухжидкостная модель. В 1940–1941 физики Л.Ландау и Л.Тиса независимо друг от друга предложили теоретическую модель сверхтекучего гелия. Ниже 2,17 К жидкий гелий рассматривается как смесь двух жидкостей: нормальной и сверхтекучей. Нормальная жидкость имеет свойства обычной вязкой жидкости. Сверхтекучая же компонента имеет нулевую вязкость, а также нулевую энтропию и энтальпию. Чуть ниже температуры перехода 2,17 К большую часть жидкости составляет нормальная компонента, а сверхтекучая – только малую часть. При дальнейшем охлаждении жидкости сверхтекучей фракции становится все больше, и ниже 1 К жидкость почти полностью оказывается сверхтекучей. На основе такой модели предсказан новый тип звуковых волн (второй звук), которые могут распространяться в сверхтекучей жидкости. Второй звук – это волна температуры, которая регистрируется при помощи термометра (обычные звуковые волны – это волны давления, которые детектируются микрофоном). Экспериментальное наблюдение второго звука (Москва, 1944) подтвердило многие аспекты двухжидкостной модели. Фонтанный эффект. Свойства течения сверхтекучей компоненты необычны, потому что такое течение может быть вызвано не только разностью давлений, но и разностью температур (обычная жидкость течет только вследствие разности давлений). Если погрузить в жидкий гелий электронагреватель, то сверхтекучая компонента потечет к нагреваемой области, а нормальная – к холодной в соответствии с законом сохранения масс. На этом основан впечатляющий эффект, называемый фонтанным. Конец тонкой трубки, набитой очень мелким порошком, опускают в жидкий гелий. Если с помощью электронагревателя нагревать жидкость в трубке, то сверхтекучая компонента потечет внутри трубки, а нормальная вязкая жидкость не сможет течь из-за сопротивления, создаваемого порошком. В результате уровень жидкости внутри трубки повышается и, если продолжать нагрев, жидкость будет бить фонтаном из верхнего конца трубки. Эффект весьма значителен: разность температур в несколько сотых кельвина может создать фонтан до метра высотой. Квантовые эффекты. Необычные свойства сверхтекучей компоненты объясняются тем, что большая часть атомов гелия движется когерентной группой, а не независимо, как атомы любого другого вещества. Наибольшее впечатление эти квантовые эффекты производят, если привести во вращение контейнер с жидким гелием. Вместо того чтобы вращаться вместе с контейнером, как обычная жидкость, сверхтекучая жидкость превращается в сплетение мелких водоворотов, которые называются квантованными вихрями. Картина течения в каждом таком вихре подобна картине течения в смерче, но в гелии скорость потока определяется постоянной Планка, фундаментальной константой квантовой механики. Существование этих квантованных вихрей во вращающемся гелии было предсказано в 1950 Л.Онсагером и Р.Фейнманом и подтверждено множеством экспериментов. В 1974 были получены первые фотографии квантованных вихрей. Это оказалось возможным благодаря захвату электронов ядром вихря (подобно тому как камни и обломки втягиваются в центр смерча). Захваченные электроны, создающие изображение на люминофорном экране, отмечают положение каждого вихря и наглядно свидетельствуют о макроскопической квантовой природе сверхтекучей жидкости. Фазовые переходы в сверхтекучей жидкости. Уменьшение плотности сверхтекучей жидкости до нуля при температуре 2,17 К и острый пик теплоемкости в этой же точке указывают на то, что при переходе сверхтекучей жидкости в нормальную происходит термодинамический фазовый переход. В своих ранних статьях Онсагер и Фейнман высказывали мнение, что механизм квантованных вихрей может лежать в основе этого фазового перехода, но ни тот, ни другой не проводил расчетов, чтобы подтвердить свою догадку. Только в 1987 математическая теория фазового перехода показала, что их мысль была верна. В этой теории увеличение тепловой энергии жидкости приводит к образованию вихревых витков, подобных кольцам дыма, которые пускают курильщики. При температуре значительно ниже 2,17 К возбуждаются только очень малые вихри, диаметром в несколько ангстрем. Эти вихри, соответствующие нормальной компоненте двухжидкостной модели Ландау, оказывают сопротивление сверхтекучей жидкости, но, будучи очень малыми, они лишь частично уменьшают ее плотность. При повышении температуры образуются вихри все больших и больших размеров. При 2,17 К вихри приобретают размеры, ограниченные только размерами сосуда; это приводит к тому, что плотность сверхтекучей жидкости обращается в нуль и гелий становится нормальной жидкостью. Сверхтекучий 3Не. Редкий изотоп 3Не начали исследовать лишь в 1949. В первых экспериментах 3Не не был сверхтекучим при температурах выше 1 К. Однако физики-теоретики предсказывали, что эта жидкость может стать сверхтекучей, если ее охладить до температур ниже 1 К. Благодаря достижениям техники низких температур группе ученых из Корнеллского университета удалось охладить жидкий 3Не до температур ниже 0,003 К и обнаружить фазовый переход в жидкости. Последующие измерения подтвердили, что жидкий 3Не становится сверхтекучим при охлаждении до сверхнизких температур. Многие свойства сверхтекучего 3Не весьма отличны от свойств 4Не. В 3Не сверхтекучая жидкость состоит из пар атомов 3Не, связанных силами взаимного притяжения. Это похоже на ситуацию в металлических сверхпроводниках, сверхпроводимость которых обусловлена образованием связанных пар электронов. Еще одно различие состоит в том, что атомы 3Не имеют магнитный момент, а атомы 4Не – нет. Это означает, что на сверхтекучий 3Не должны действовать внешние магнитные поля. Дальнейшие исследования сделают более понятной квантовую природу сверхтекучести.
Перейти на страницу: 1 2 3 4 5