Реактивный двигатель
Физическая основа теплового двигателя
Совершение механической работы в современных машинах и механизмах в основном происходит за счет внутренней энергии веществ.
Тепловой двигатель – устройство, преобразующее внутреннюю энергию топлива в механическую энергию
Невозможно представить себе современную цивилизацию без тепловых двигателей.
Механическая работа в двигателе совершается при расширении рабочего вещества, перемещающего поршень в цилиндре. Для цикличной, непрерывной работы двигателя необходимо возвращения поршня в его первоначальное положение, т.е. сжатие рабочего вещества. Легко сжимаемым веществом является вещество в газообразном состоянии, поэтому в качестве рабочего вещества в тепловых двигателях используется газ или пар.
Работы теплового двигателя состоит из периодически повторяющихся процессов расширения и сжатия газа. Сжатие газа не может быть самопроизвольным, оно происходит только под действием внешней силы, например за счет энергии, запасенной маховиком двигателя при расширении газа.
Полная механическая работа А складывается из работы расширения газа Арасш и работы сжатия газа Асж, совершаемой силами давления газа при его сжатии. Так как при сжатии ΔV<0, то Асж = - |Асж |<0, поэтому
А= Арасш - |Асж|.
Для получения положительной полной механической работы (А>0) необходимо, чтобы работа сжатия газа была меньше работы его расширения.
С учетом формулы: A=pΔV имеем А=(pрасш - pсж) ΔV.
Изменение объема ΔV газа при расширении и сжатии должно быть одинаковым из-за цикличности работы двигателяю.
Следовательно, давление газа при сжатии должно быть меньше его давления при расширении. При одном и том же объеме газа тем меньше, чем ниже его температура, поэтому перед сжатием газ должен быть охлажден, т.е. приведен в контакт с холодильной машиной – телом, имеющим более низкую температуру. Для получения механической работы в тепловом двигателе при циклическом процессе расширение газа должно происходить при более высокой температуре, чем сжатие.
Необходимое условие дл циклического получения механической работы в тепловом двигателе – наличие нагревателя и холодильника.
История теплового двигателя
Созданию тепловых машин предшествовало доказательство существования атмосферного давления.
РЕАКТИВНЫЙ ДВИГАТЕЛЬ
Реактивный двигатель, двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р. д. могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная). Р. д. (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.
Для создания реактивной тяги, используемой Р. д., необходимы: источник исходной
(первичной) энергии, которая превращается в кинетическую энергию реактивной струи;
рабочее тело, которое в виде реактивной струи выбрасывается из Р. д.; сам Р. д. -
преобразователь энергии. Исходная энергия запасается на борту летательного или др.
аппарата, оснащенного Р. д. (химическое горючее, ядерное топливо), или (в принципе)
может поступать извне (энергия Солнца). Для получения рабочего тела в Р. д. может
использоваться вещество, отбираемое из окружающей среды (например, воздух или вода);
вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В современных Р. д. в качестве первичной чаще всего используется химическая энергия. В этом случае рабочее тело представляет собой раскалённые газы - продукты сгорания химического топлива. При работе Р. д. химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. Основной частью любого Р. д. является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется реактивным соплом.
В зависимости от того, используется или нет при работе Р. д. окружающая среда,
их подразделяют на 2 основных класса - воздушно-реактивные двигатели (ВРД) и
ракетные двигатели (РД). Все ВРД - тепловые двигатели, рабочее тело которых образуется
при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а большую часть рабочего тела черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащенного РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.
Принцип реактивного движения известен очень давно. Родоначальником Р. д. можно считать шар Герона. Твёрдотопливные ракетные двигатели - пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые. В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе. Первые советские жидкостные ракетные двигатели - ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П. Глушко и под его руководством созданы в 1930-31 в Газодинамической лаборатории (ГДЛ). В 1926 Р. Годдард произвёл запуск ракеты на жидком топливе. Впервые электротермический РД был создан и испытан Глушко в ГДЛ в 1929-33.