Специфика физики микрообъектов
3. Соотношения неопределенностей.
Идея дуализма и соотношения неопределенностей. Рассмотрим совокупность большого числа плоских волн (природа волн не существенна), распространяющихся, например, вдоль оси x. Пусть частоты волн «разбросаны»
в некотором интервале Δω, а значения волнового
вектора – в интервале Δkx. Если наложить друг на
друга все эти плоские волны, то в результате
получится волновое образование, ограниченное в
пространстве,– так называемый волновой пакет
(рис.2). Размытие волнового пакета в пространстве
D x (Δx) и по времени (Δt) определяется соотношениями:
рис.2 Δω Δt > 1,
Δkx Δx >1.
Эти соотношения хорошо известны в классической физике. Тот, кто знаком с радиотехникой, знает, что для создания более локализованного сигнала надо взять побольше плоских волн с разными частотами. Иначе говоря, чтобы уменьшить Δx и Δt, надо увеличивать Δkx и Δω.
Далее отвлечемся от волнового пакета и будем формально полагать, что соотношения справедливы не только для классических волн, но также и для волновых характеристик микрообъекта. Это предположение отнюдь не означает, что в действительности мы моделируем микрообъект в виде некоего волнового пакета. Если рассматривать величины kx и ω как волновые характеристики микрообъекта, то нетрудно перейти к аналогичным выражениям для корпускулярных характеристик микрообъекта (для его энергии и импульса):
ΔEΔt > h,
ΔpxΔx > h.
Эти соотношения были впервые введены Гейзенбергом в 1927 г. их принято называть соотношениями неопределенностей.
Эти соотношения можно дополнить следующим соотношением неопределенностей:
ΔMxΔφx > h,
где Δφx – неопределенность угловой координаты микрообъекта (рассматривается поворот около оси х), а ΔMx – неопределенность проекции момента на ось х.
По аналогии могут быть записаны соотношения для других проекций импульса и момента:
ΔpyΔy > h, ΔpzΔz > h,
ΔMyΔφy > h, ΔMzΔφz > h.
Смысл соотношений неопределенностей. Обсудим соотношение ΔpxΔx > h. Здесь Δx – неопределенность х-координаты микрообъекта, Δpx – неопределенность х-проекции его импульса. Чем меньше Δx, тем больше Δpx, и наоборот. Если микрообъект локализован в некоторой определенной точке х, то х-проекция его импульса должна иметь сколь угодно большую неопределенность. Если, напротив, микрообъект находится в состоянии с определенным значением px , то он должен быть делокализован по всей оси х.
Иногда соотношение неопределенностей трактуют так: нельзя измерить координату и импульс микрообъекта с произвольно высокой точностью одновременно; чем точнее измерена координата, тем менее точно должен быть измерен импульс. Такая трактовка не очень удачна, так как из нее можно вывести ложное заключение, что смысл соотношения сводится к ограничениям, которые оно накладывает на процесс измерения. В этом случае можно предположить, что микрообъект сам по себе имеет и какой-то импульс и какую-то координату, но соотношение неопределенностей не позволяет нам измерить их одновременно.
В действительности же здесь ситуация иная – просто сам микрообъект не может иметь одновременно и определенную координату, и определенную соответствующую проекцию импульса; если, например, он находится в состоянии с определенным значением координаты, то в этом состоянии соответствующая проекция его импульса оказывается менее определенной. Естественно, что отсюда вытекает естественная невозможность совместного измерения координат и импульсов микрообъектов. Это есть следствие специфики микрообъектов, а отнюдь не какой-либо каприз природы, в силу которого будто бы не все существующее познаваемо. Следовательно, смысл соотношений не в том, что оно создает какие-то препятствия на пути познания микроявлений, а в том, что оно отражает некоторые особенности объективных свойств микрообъектов.
Далее отдельно остановимся на соотношении ΔEΔt > h. Рассмотрим несколько отличающихся друг от друга, хотя и взаимно согласующихся толкования этого соотношения. Предположим, что микрообъект нестабилен, пусть Δt – время его жизни в рассматриваемом состоянии. Энергия микрообъекта в данном состоянии должна иметь неопределенность ΔΕ, которая связана с временем жизни Δt рассматриваемым соотношением. В частности, если состояние является стационарным (Δt сколь угодно велико), то энергия микрообъекта будет точно определенной (ΔЕ = 0).
Другое толкование соотношения связано с измерением, преследующем цель выяснить, находится микрообъект на уровне Е1 или же на уровне Е2. Такое измерение требует конечного времени Т, зависящего от расстояния между уровнями (Е2-Е1):
(Е2-Е1)Т > h.
Нетрудно усмотреть связь между этими двумя трактовками. Чтобы разрешить уровни Е1 и Е2, необходимо, очевидно, чтобы неопределенность энергии микрообъекта ΔЕ не превышала расстояния между уровнями: ΔЕ < (Е2-Е1). В то же время длительность измерения Т не должна, очевидно, превышать время жизни Δt микрообъекта на данном уровне: Т < Δt. Крайние условия, в которых измерения еще возможны, следовательно, имеют вид
ΔE Е2-Е1, T Δt.
Соотношения неопределенностей показывают, каким образом следует пользоваться понятиями энергии, импульса и момента импульса при переходе к микрообъектам. Здесь обнаруживается весьма важная особенность физики микрообъектов: энергия, импульс и момент микрообъекта имеют смысл, но с ограничениями, налагаемыми соотношениями неопределенностей. Как писал Гейзенберг, «мы не можем интерпретировать процессы в атомарной области так же, как процессы большого масштаба. Если же мы пользуемся обычными понятиями, то их применимость ограничивается так называемыми соотношениями неопределенностей».
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14