Рефераты по Физике

Теория твердоемкости тела. Ход Дебая

Страница 2

Отметим также, что теплоемкость С линейна по Т. При очень низких температурах этот линейный член, который обычно записывают в виде

С = Т

можно отделить от решеточного члена, который стремится к нулю быстрее — как Т . Измерение дает непосредственную инфор­мацию о величине — плотности состоянии на уровне Ферми. Например, для переходных металлов наблюдаются высо­кие значения у в соответствии со сказанным в настоящие главы.

Происхождение линейного хода теплоемкости при низких температурах можно понять следующим образом. Рассмотрим распределение Ферми. Влияние температуры сводится к возбуждению небольшого числа электронов на более высокие уровни. Но этот аффект может быть заметным только в области энергии порядка Т вблизи . Мы можем сказать, что каждый

Термическое возбужденно электронов в металле.

электрон из общего числа, примерно равного ( ), при­обретает энергию порядка Т. Таким образом, полный выигрыш энергии составляет приблизительно

Это соответствует теплоемкости

Электронная теплоемкость

Электроны в металлах должны вносить некоторый вклад в пол­ную теплоемкость. Чтобы найти его, вычислим среднюю энергию электронов. Воспользуемся формулой (1), предполагая, чти система электронов сильно вырождена

Продифференцируем этот результат по температуре, учитывая , что уровень Ферми также зависит от температуры(3):

Здесь использовано равенство и опущены члены высшего порядка по Т.

Это очень важный результат. Сравним выражение (3) с теплоемкостью классического газа частиц, скажем 3/2 . В кван­товом случае результат намного меньше. Для свободных элек­тронов плотность состояний при энергии, равной энергии Ферми, составляет 3/2 , так что

Твердые тела.

Колебания решетки подобны акустическим стоячим волнам, которые также являются синхронно и взаимно независимыми. В дальнейшем мы будем разлагать каждый тип колебаний на две бегущие волны, волновые векторы которых имеют про­тивоположные знаки.

В квантовой механике отдельные типы колебаний рассма­триваются таким же путем, как и в классической физике. Энергии этих колебаний дискретны. и равны (1 / 2 + n )h .Квантовые числа n можно рассматривать как числа «фононов» или звуковых квантов с энергией . Фононам приписывается импульс, равный , где с—скорость звука.

Произведение

(9)

равно нулю, если . Если колебания рассматриваются как функции векторов решетки, то они должны обладать свойством ортогональности. Их можно в общем случае рас­сматривать как волновые функции фононов.

Так как имеют место два поперечных и сдан продольный типы колебаний. Совместимых с каждым волновым вектором, то типы колебания, или состояния фонона, должны характери­зоваться „спиновой переменной’’ s , которая может принимать три значения. Для упрощения записи эта спиновая перемен­ная, где это возможно, опускается.

Несмотря на то что понятие фонона является не более чем образным выражением, оно все же полезно, позволяя объединить статистические теории газообразного и твердого состояний. Если обозначить энергию фонона через , а число типов колебаний в бесконечно малой области вблизи через , то поведение кристалла во многих отношениях можно изучать как свойства фононного газа.

Термодинамические величины кристаллического твердого тела в соответствии с этим будут равны сумме термодинамических функций отдельных типов колебаний. В частности, свободная энергия будет равна:

(10)

также молярная теплоемкость выражается в виде:

(11)

Функция должна подчиняться требованию

(12)

Ввиду последнего условия правая часть равенства (11) при высокой температуре будет равна 3NR для любой функции ( ). При низких температурах играют роль только неболь­шие значения энергий , а для этих энергетических уровней кристалл можно рассматривать как идеальный фононный газ. Распределение однофононных состояний по импульсам идентично соответствующему распределению для материальных частиц, т. е. ( ) . Учитывая связь между импульсом и энергией, получим распределение по энергиям (13)

78

Интеграл дает только численный множитель, так что теплоемкость пропорциональна кубу температуры. Чтобы вывести формулу для интерполяции между надежными зна­чениями теплоемкости при высокой и низкой температуре, мы предположим, что выражение (13) справедливо ниже определенного предела энергии, тогда как за его пределами

. Этот предел выбирается таким образом, чтобы выполнялось условие (12). В терминах „дебаевской темпе­ратуры» , которая является эмпирической константой, ха­рактерной для данного твердого тела, предельную энергию можно выразить в виде . Кривая теплоемкости тогда

будет иметь вид

(14)

В этом выражении интеграл является функцией температуры и находится из таблиц или вычисляется численным интегри­рованием. Согласие этой формулы с измерениями лучше, чем можно было ожидать на основании предположений, сде­ланных при ее выводе.

Переходя теперь к переносу тепла в твердом теле, мы тотчас замечаем, что фононы, обладая свойствами волн, спо­собны передавать энергию на любое расстояние независимо от градиента температуры. Такой перенос тепла скорее на­поминает процесс излучения, чем процесс теплопроводности. Однако эксперимент с несомненностью показывает, что теплота передается через кристаллические; твердые тела только при наличии неоднородности температуры.

В качестве предпосылки к возникновению стационарных градиентов температуры необходимо, чтобы фононы могли обмениваться энергией. Такой обмен возможен, если принять во внимание ангармонические члены в выражении по­тенциальной энергии . Эти члены можно выразить в функции отдельных типов колебаний. Решая отно­сительно Гц и подставляя , мы получим эту часть потенциальной энергии в виде ряда, в котором каждый член зависит от произведения трех типов колебаний:

(15)

Тензоры третьего ранга Ь являются, по крайней мере в прин­ципе, известными величинами.

Каждый член в уравнении можно использовать для вычисления матричного элемента, определяющего в соответ­ствии с вероятность перехода между состояниями с двумя типами колебаний и состоянием с одним типом ко­лебания или обратно. Процессы такого рода известны под названием трехфононных столкновений. Матричные эле­менты в общем случае обращаются в нуль, когда осуще­ствляется суммирование по узлам решетки, так как экспо­ненциальные функции меняют знак и сокращаются. Неисче­зающие матричные элементы соответствуют только таким процессам, в которых

Перейти на страницу:  1  2  3  4