Термопара
Отметим, что вследствие большой тепловой скорости электронов обмен электронами происходит весьма быстро и равновесие устанавливается уже в ничтожные доли секунды.
Согласно закону Ома плотность тока внутри металла равна . Так как в равновесии j=0, то и электрическое поле в любой точке толще металлов рано нулю. Это значит, что электрическое поле существует только в тонком пограничном слое между обоими проводниками, на котором сосредоточена и вся контактная разность потенциалов.
Полученные результаты можно наглядно представить с помощью энергетической диаграммы. Будем откладывать по вертикальной оси потенциальную энергию электрона внутри металла, равную W=eU (e – заряд электрона, U – значение потенциала), а по горизонтальной оси – перемещение вдоль металла. Тогда получится распределение энергии, изображенное на рис. 2.
Так в отсутствии тока потенциал внутри металла одинаков, то энергия W постоянна в разных точках одного и того же металла. Однако ее значение в обоих металлах различно и меньше в металле 1, заряженном положительно, нежели в проводнике 2 (так как заряд электрона e<0). Разность энергий электрона в обоих проводниках равна eUвнутр.
Вычислим теперь величину внутренней контактной разности потенциалов.
В классической электронной теории задача о равновесии электронов в двух соприкасающихся проводниках не отличается от задачи о равновесии атомарного газа, находящегося в поле тяжести. Из молекулярной физики известно, что концентрация атомов газа n на высоте h связана с концентрацией nо у поверхности земли формулой: , где m – масса атома, g – ускорение поля тяжести, k – постоянная Больцмана, T – абсолютная температура, которая предполагается одинаковой во всем газе. Здесь mgh есть разность потенциальных энергий (W1-W2) атома газа на высоте h и у поверхности земли. В случае двух соприкасающихся металлов W1-W2=eUвнутр. и поэтому
,
где n1 и n2 – концентрации электронов в обоих металлах. Отсюда
(2)
Рис. 3. Возникновение внешней контактной разности потенциалов.
Возникновение внешней контактной разности потенциалов объясняется следующим образом. Рассмотрим, какое электрическое состояние установится у свободных концов двух соприкасающихся металлов. Пусть, сначала два различных металла 1 и 2 разобщены друг с другом. В этом случае потенциальная эенргия электрона в различных точках пространства изображается кривыми рис. 3. При построении этого графика энергия покоящегося электрона в вакууме (вне металла) принята равной нулю. Так как оба металла не заряжены, то электрического поля между ними нет и энергия электрона в пространстве между металлами остается постоянной. Она постоянна и внутри металлов (точнее, постоянно ее среднее значение), но имеет другую, меньшую величину. Каждый кусок металла на этом графике характеризуется потенциальным ящиком.
В классической теории глубина потенциальной ямы равна термоэлектронной работе выхода электрона из металла А.
Приведем теперь в соприкосновение оба куска металла. Тогда в контактном слое вследствие диффузии электронов установится скачок потенциала Uвнутренний, равный внутренней контактной разности потенциалов и между днищами обоих потенциальных ящиков будет малое энергетическое состояние eU (рис. 3б). Но так как глубины потенциальных ящиков различны, то их внешние края окажутся на разных высотах. Это значит, что между двумя любыми точками А и Б, находящимися вне металлов, но расположенными в непосредственной близости от их поверхности, возникает разность потенциалов. Она получила название внешней контактной разности потенциалов обоих металлов. Между обоими соприкасающимися металлами во внешнем пространстве появится электрическое поле, а на поверхности металлов возникнут электрические заряды (рис. 3). Из рис. 3 видно, что контактная разность потенциалов равна
Ua = j2-j1±Uвнутр., (3)
где знак + или – следует выбирать в зависимости от знака внутренней контактной разности.
Оценка показывает, что Uвнутр мало и имеет порядок 10-2 – 10-3 В. Напротив, работы выхода А измеряются несколькими эВ и такой же порядок имеет их разность для различных пар металлов. Поэтому с достаточной точностью можно считать:
Ua = (A2-A1)/e, (4)
т.е. контактная разность потенциалов двух металлов равна разности их работ выхода. Квантовая теория металлов показывает, что данная формула верна совершенно точно.
Рассмотрим теперь цепь, состоящую не из двух, а из нескольких металлов 1, 2, 3, 4. Дополнительные разности потенциалов здесь не возникают, поэтому контактная разность цепи из 4-х металлов равна
U12+U23+U34 = (j2 - j1)+(j3 - j2)+(j4 - j3) = j4 - j1 = U14 (5)
т.е. такая же, как в отсутствии промежуточных металлов 2 и 3. Контактная разность определяется только крайними металлами цепи.
Если имеется замкнутая цепь, составленная из разных металлов или вообще из электронных проводников (проводников первого класса), то внешняя контактная разность вообще не возникает и остаются только внутренние контактные разности и т.д.
Сумма этих скачков потенциала равна
(6)
Следовательно, и электродвижущая сила цепи, составленной из каких угодно проводников первого класса, но находящихся при одинаковой температуре, равна нулю. Такой же результат получается и в квантовой теории металлов.