Фотоэффект
В неоднородных полупроводниках наряду с изменением проводимости наблюдается также образование разности потенциалов (фото – э.д.с.). Это явление (фотогальванический эффект) обусловлено тем, что в силу однородностей проводимости полупроводников происходит пространственное разделение внутри объема проводника оптически возбужденных электронов, несущих отрицательный заряд и микрозон (дырок), возникающих в непосредственной близости от атомов, от которых оторвались электроны, и подобно частицам несущих положительный элементарный заряд. Электроны и дырки концентрируются на разных концах полупроводника, вследствие чего и возникает электродвижущая сила, благодаря которой и вырабатывается без приложения внешней э.д.с. электрический ток в нагрузке, подключенной параллельно освещенному полупроводнику. Таким образом достигается прямое преобразование световой энергии в электрическую. Именно по этой причине фотогальванические приемники света и используются не только для регистрации световых сигналов, Нои в электрических цепях как источники электрической энергии.
Основные промышленно выпускаемые типы таких приемников работают на основе селена и сернистого серебра. Весьма распространен также кремний, германий и ряд соединений - GaAs, InSb, CdTe и другие. Фотогальванические элементы, используемые для преобразования солнечной энергии в электрическую, приобрели особенно широкое применение в космических исследованиях как источники бортового питания. Они обладают относительно высоким коэффициентом полезного действия (до 20%), весьма удобны в условиях автономного полета космического корабля. В современных солнечных элементах в зависимости от полупроводникового материала фото – э.д.с. достигает 1 – 2 В, съем тока с - нескольких десятков миллиампер, а на 1 кг массы выходная мощность достигает сотен ватт. [1]
Применение явления фотоэффекта.
В настоящее время на основе внешнего и внутреннего фотоэффекта строится бесчисленное множество приемников излучения, преобразующих световой сигнал в электрический и объединенных общим названием – фотоэлементы. Они находят весьма широкое применение в технике и в научных исследованиях. Самые разные объективные оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов. Современная фотометрия, спектрометрия и спектрофотометрия в широчайшей области спектра, спектральный анализ вещества, объективное измерение весьма слабых световых потоков, наблюдаемых, например, при изучении спектров комбинационного рассеяния света, в астрофизике, биологии и т.д. трудно представить себе без применение фотоэлементов; регистрация инфракрасных спектров часто осуществляется специальными фотоэлементами для длинноволновой области спектра. Необычайно широко используются фотоэлементы в технике: контроль и управление производственными процессами, разнообразные системы связи от передачи изображения и телевидения до оптической связи на лазерах и космической техники представляют собой далеко не полный перечень разнообразнейших технических вопросов в современной промышленности и связи.
История создания фотоэлементов насчитывает уже более 130 лет. Первый фотоэлемент, основанный на внутреннем фотоэффекте и использующий явление фотопроводимости, был построен в 1875 г., первый же вакуумный фотоэлемент, основанный на внешнем фотоэффекте, был построен в 1889 г. Промышленное производство вакуумных фотоэлементов в России было организовано П.В.Тимофеевым в 1930 г. Интересно отметить, что фотоэлементы, использующие внешний фотоэффект, раньше приобрели широкое развитие, хотя внутренний фотоэффект был открыт по крайней мере на 50 лет раньше. Только в сороковых годах нашего столетия благодаря бурному развитию физики полупроводников и детальному изучению внутреннего фотоэффекта началось создание новых фотоэлементов на основе полупроводниковых материалов.
Огромное разнообразие задач, решаемых с помощью фотоэлементов, вызвало к жизни чрезвычайно большое разнообразие типов фотоэлементов с различными техническими характеристиками. Выбор оптимального типа фотоэлементов для решения каждой конкретной задачи основывается на знании эти характеристик. Для фотоэлементов с внешним фотоэффектом (вакуумных фотоэлементов) необходимо знание следующих характеристик: рабочая область спектра; относительная характеристика спектральной чувствительности (она строится как зависимость от длины волны падающего света безразмерной величины отношения спектральной чувствительности при монохроматическом освещении к чувствительности в максимуме этой характеристики); интегральная чувствительность (она определяется при освещении фотоэлемента стандартным источником света); величина квантового выхода (процентное отношение числа эмитированных фотоэлектронов к числу падающих на фотокатод фотонов); инерционность (для вакуумных фотоэлементов она определяется обычно через время пролета электронов от фотокатода к аноду). Важным параметром служит также темновой ток фотоэлемента, который складывается из термоэмиссии фотокатода при комнатной температуре и тока утечки.
В зависимости от материала фотокатода и материала колбы фотоэлемента их можно применять в диапазоне 0,2 – 1,1 мкм. Их интегральная чувствительность лежит в пределах 20 – 100 мкА на 1 лм светового потока, а термоэмиссия – в пределах . Очень важным достоинством вакуумных фотоэлементов является их высокое постоянство и линейность связи светового потока с фототоком. Поэтому они длительное время преимущественно использовались в объективной фотометрии, спектрометрии, спектрофотометрии и спектральном анализе в видимой ультрафиолетовой областях спектра. Главным недостатком вакуумных фотоэлементов при световых измерениях следует считать малость электрических сигналов, вырабатываемых этими приемниками света. Последний недостаток полностью устраняется в фотоэлектронных умножителях (ФЭУ), представляющих как бы развитие фотоэлементов. ФЭУ были впервые построены в 1934 г.
Перейти на страницу: 1 2 3 4 5