Назначение и область применения лазеров
Классификация лазеров и их характеристики
Принято различать два типа лазеров: усилители и генераторы. На выходе усилителя появляется лазерное излучение, когда на его вход (а сам он уже находится в возбужденном состоянии) поступает незначительный сигнал на частоте перехода. Именно этот сигнал стимулирует возбужденные частицы к отдаче энергии. Происходит лавинообразное усиление. Таким образом – на входе слабое излучение, на выходе – усиленное.
С генератором дело обстоит иначе. На его вход излучение на частоте перехода уже не подают, а возбуждают и, более того, перевозбуждают активное вещество. Причем если активное вещество находится в перевозбужденном состоянии, то существенно растет вероятность самопроизвольного перехода одной или нескольких частиц с верхнего уровня на нижний. Это приводит к возникновению стимулированного излучения.
Второй подход к классификации лазеров связан с физическим состоянием активного вещества. С этой точки зрения лазеры бывают твердотельными (например, рубиновый, стеклянный или сапфировый), газовыми (например, гелий-неоновый, аргоновый и т.п.), жидкостными, если в качестве активного вещества используется полупроводниковый переход, то лазер называют полупроводниковым.
Третий подход к классификации связан со способом возбуждения активного вещества. Различают следующие лазеры: с возбуждением за счет оптического излучения, с возбуждением потоком электронов, с возбуждением солнечной энергией, с возбуждением за счет энергий взрывающихся проволочек, с возбуждением химической энергией, с возбуждением с помощью ядерного излучения. Различают также лазеры по характеру излучаемой энергии и ее спектральному составу. Если энергия излучается импульсно, то говорят об импульсных лазерах, если непрерывно, то лазер называют лазером с непрерывным излучением. Есть лазеры и со смешанным режимом работы, например полупроводниковые. Если излучение лазера сосредоточено в узком интервале длин волн, то лазер называют монохроматичным, если в широком интервале, то говорят о широкополосном лазере.
Еще один вид классификации основан на использовании понятия выходной мощности. Лазеры, у которых непрерывная (средняя) выходная мощность более 10^6 Вт,
называют высокомощными. При выходной мощности в диапазоне 10^5…10^3 Вт имеем лазеры средней мощности. Если же выходная мощность менее 10^-3 Вт, то говорят о маломощных лазерах.
В зависимости от конструкции открытого зеркального резонатора различают лазеры с постоянной добротностью и лазеры с модулированной добротностью – у такого лазера одно из зеркал может быть размещено, в частности, на оси электродвигателя, который вращает это зеркало. В данном случае добротность резонатора периодически меняется от нулевого до максимального значения. Такой лазер называют лазером с Q-модуляцией.
Одной из характеристик лазеров является длина волны излучаемой энергии. Диапазон волн лазерного излучения простирается от рентгеновского участка до дальнего инфракрасного, т.е. от 10^-3 до 10^2 мкм. За областью 100 мкм лежит, образно говоря, “целина”. Но она простирается только до миллиметрового участка, который осваивается радистами. Этот неосвоенный участок непрерывно сужается, и есть надежда, что его освоение завершится в ближайшее время. Доля, приходящаяся на различные типы генераторов, неодинакова. Наиболее широкий диапазон у газовых квантовых генераторов.
Другой важной характеристикой лазеров является энергия импульса. Она измеряется в джоулях и наибольшей величины достигает у твердотельных генераторов – порядка 10^3 Дж. Третьей характеристикой является мощность. Газовые генераторы, которые излучают непрерывно, имеют мощность от 10^-3 до 10^2 Вт. Милливаттную мощность имеют генераторы, использующие в качестве активной среды гелий-неоновую смесь. Мощность порядка 100 Вт имеют генераторы на CO2. С твердотельными генераторами разговор о мощности имеет особый смысл. К примеру, если взять излучаемую энергию в 1 Дж, сосредоточенную в интервале в одну секунду, то мощность составит 1 Вт. Но длительность излучения генератора на рубине составляет 10^-4 с, следовательно, мощность составляет 10000 Вт, т.е. 10 кВт. Если же длительность импульса уменьшена с помощью оптического затвора до 10^-6 с, мощность составляет 10^6 Вт, т.е. мегаватт. Это не предел! Можно увеличить энергию в импульсе до 10^3 Дж и сократить ее длительность до 10^-9 с и тогда мощность достигнет 10^12 Вт. А это очень большая мощность. Известно, что когда на металл приходится интенсивность луча, достигающая 10^5 Вт/см^2, то начинается плавление металла, при интенсивности 10^7 Вт/см^2 – кипение металла, а при 10^9 Вт/см^2 лазерное излучение начинает сильно ионизировать пары вещества, превращая их в плазму.
Еще одной важной характеристикой лазера является расходимость лазерного луча. Наиболее узкий луч имеют газовые лазеры. Он составляет величину в несколько угловых минут. Расходимость луча твердотельных лазеров около 1…3 угловых градусов. Полупроводниковые лазеры имеют лепестковый раскрыв излучения: в одной плоскости около одного градуса, в другой – около 10…15 угловых градусов.
Следующей важной характеристикой лазера является диапазон длин волн, в котором сосредоточено излучение, т.е. монохроматичность. У газовых лазеров монохроматичность очень высокая, она составляет 10^-10, т.е. значительно выше, чем у газоразрядных ламп, которые раньше использовались как стандарты частоты. Твердотельные лазеры и особенно полупроводниковые имеют в своем излучении значительный диапазон частот, т. е. не отличаются высокой монохроматичностью.
Очень важной характеристикой лазеров является коэффициент полезного действия. У твердотельных он составляет от 1 до 3,5%, у газовых 1…15%, у полупроводниковых 40…60%. Вместе с тем принимаются всяческие меры для повышения кпд лазеров, ибо низкий кпд приводит к необходимости охлаждения лазеров до температуры 4…77 К, а это сразу усложняет конструкцию аппаратуры.
Области применения лазеров в науке и технике
Лазеры в геодезии
Перейти на страницу: 1 2 3 4 5 6 7