Сравнительный анализ методик преобразований Галилея в курсе общей физики и в курсе элементарной физики
Далее в этом параграфе вводятся формула сложения перемещений
и формула сложения скоростей
,
а так же, чему равна скорость тела относительно неподвижной системы координат.
Мы видим, что и перемещение и скорость тела относительно разных систем отсчета различны. Различны и траектория движения (- относительно подвижной системы и - относительно неподвижной). В этом и состоит относительность движения.
Далее мы переходим к рассмотрению преобразований Галилея в курсе общей физики.
С объяснения этого понятия начинается изучение принципа относительности Галилея. Сопоставляются описания движения частицы в инерциальных системах отсчета и, движущихся друг относительно друга со скоростью (рис.6).
рис. 6
Для простоты выбираются оси координат так, как показано на рисунке. Отсчет времени начинается с того момента, когда начала координат и совпадали. Тогда координаты и произвольно выбранной точки будут связаны соотношением . При сделанном выборе осей и . В ньютоновской механике предполагается, что время во всех системах отсчета течет одинаково; поэтому . Таким образом, получается совокупность четырех уравнений:
, , , ,
называемых преобразованиями Галилея. Эти уравнения позволяют перейти от координат и времени одной инерциальной системы отсчета к координатам и времени другой инерциальной системы. [4]
Следуя по программе, далее рассматриваются инерциальные системы отсчета и первый закон Ньютона.
Законы механики одинаково выглядят во всех инерциальных системах отсчета.
Затем необходимо познакомиться с классическим законом сложения скоростей. Мы знаем, что компоненты скоростичастицы в системе определяются выражениями
, , .
В системе компоненты скорости той же частицы равны
, , .
В ходе некоторых вычислений формулы преобразования скоростей при переходе от системы к системе .
, , .
Далее по программе рассматривается инвариантность длины, интервала времени, ускорения, а также абсолютный характер понятия одновременности.
Сравнивая методики, мы видим, что более четко, сложно преобразования Галилея изучаются в курсе общей физики. В школьном курсе вводится лишь понятие относительности движения.
Заключение.
Кинематика сложна для восприятия. Причина понятна: обилие математики (алгебра, геометрия, тригонометрия в полном объеме). Упрощение же математического аппарата выхолащивает суть кинематики – классификацию движений и описание моделей.
Кроме всех очень важных понятий в кинематике учащиеся также знакомятся с не менее важной для всего курса физики идеей – идеей относительности движения, изучение которой должно быть доведено до понимания учащимися относительности координат, траекторий, перемещений и скоростей.
От идеи относительности движения в классической механике учащиеся в дальнейшем своем развитии подходят к пониманию основ специальной теории относительности.
При изучении кинематики уже имеется возможность обратить внимание учащихся на заслуги Галилея в создании научного метода познания. Наиболее важным открытием его были уравнения, связывающие координаты и время некоторого события в двух инерциальных системах отсчета. В дальнейшем они были названы преобразованиями Галилея.
Список литературы.
Перейти на страницу: 1 2 3 4 5 6 7