Полупроводники, р-n переход
Таким образом, в полупроводнике с 5-валентной примесью имеется только один вид носителей тока — электроны. Соответственно говорят, что такой полупроводник обладает электронной проводимостью или является полупроводником n-типа (от слова negativ — отрицательный). Атомы примеси, поставляющие электроны проводимости, называются д о н о р а м и.
Примеси искажают поле решетки, что приводит к возникновению на энергетической схеме так называемых локальных уровней, расположенных в запрещенной зоне кристалла (рис. 5). Любой уровень валентной зоны или зоны проводимости может быть занят электроном, находящимся в любом месте кристалла.
Рис.5
Энергию, соответствующую локальному уровню, электрон может иметь, лишь находясь вблизи атома примеси, вызвавшего появление этого уровня. Следовательно, электрон, занимающий примесный уровень, локализован вблизи атома примеси.
Если донорные уровни расположены недалеко от потолка валентной зоны, они не могут существенно повлиять на электрические свойства кристалла. Иначе обстоит дело, когда расстояние таких уровней от дна зоны проводимости гораздо меньше, чем ширина запрещенной зоны, В этом случае энергия теплового движения даже при обычных температурах оказывается достаточной для того, чтобы перевести электрон с донорного уровня в зону проводимости. На рис. 4 этому процессу соответствует отщепление пятого валентного электрона от атома примеси. Захвату свободного электрона атомом примеси соответствует на рис. 5 переход электрона из зоны проводимости на один из донорных уровней.
Уровень Ферми в полупроводнике n-типа лежит между донорными уровнями и дном зоны проводимости, при невысоких температурах — приблизительно посредине между ними (рис. 5).
На рис. 6 условно изображена решетка кремния с примесью 3-валентных атомов бора. Трех валентных электронов атома бора недостаточно для образования
Рис.6
связей со всеми четырьмя соседями. Поэтому одна из связей окажется неукомплектованной и будет представлять собой место, способное захватить электрон. При переходе на это место электрона одной из соседних пар возникнет дырка, которая будет кочевать по кристаллу. Вблизи атома примеси возникнет избыточный отрицательный заряд, но он будет связан с данным атомом и не может стать носителем тока. Таким образом, в полупроводнике с 3-валентной примесью возникают носители тока только одного вида — дырки. Проводимость в этом случае называется дырочной, а о полупроводнике говорят, что он принадлежит к p-типу (от слова positiv — положительный). Примеси, вызывающие возникновение дырок, называются акцепторными.
На схеме уровней (рис. 7) акцептору соответствует расположенный в запретной зоне недалеко от ее дна локальный уровень. Образованию дырки отвечает переход электрона из валентной зоны на акцепторный уровень. Обратный переход соответствует разрыву одной из четырех ковалентных связей атома примеси с его соседями и рекомбинации образовавшегося при этом электрона и дырки.
Уровень Ферми в полупроводнике р-типа лежит между потолком валентной зоны и акцепторными уровнями, при невысоких температурах — приблизительно посредине между ними.
С повышением температуры концентрация примесных носителей тока быстро достигает насыщения. Это означает, что практически освобождаются все донорные или
Рис.7
заполняются электронами все акцепторные уровни. Вместе с тем по мере роста температуры все в большей степени начинает сказываться собственная проводимость полупроводника, обусловленная переходом электронов непосредственно из валентной зоны в зону проводимости. Таким образом, при высоких температурах проводимость полупроводника будет складываться из примесной и собственной проводимости. При низких температурах преобладает примесная, а при высоких — собственная проводимость.
P-N переход
Выпрямление токов и усиление напряжений можно осуществить с помощью полупроводниковых устройств, называемых полупроводниковыми (или кристаллическими) диодами и триодами. Полупроводниковые триоды называют также транзисторами.
Полупроводниковые устройства можно подразделить на две группы: устройства с точечными контактами и устройства с плоскостными контактами. Мы ограничимся рассмотрением плоскостных диодов и транзисторов. Основным элементом плоскостных устройств является так называемый р—n-переход. Он представляет собой тонкий слой на границе между двумя областями одного и того же кристалла, отличающимися типом примесной проводимости. Для изготовления такого перехода берут, например, монокристалл из очень чистого германия с электронным механизмом проводимости (обусловленным ничтожными остатками примесей). В вырезанную из кристалла тонкую пластинку вплавляют с одной стороны кусочек индия. Во время этой операции, которая осуществляется в вакууме или в атмосфере инертного газа, атомы индия диффундируют в германий на некоторую глубину. В той области, в которую про
Рис.8 никают атомы индия, проводимость германия становится дырочной. На границе этой области возникает р— n-переход.
На рис. 8 показан ход концентрации примесей в направлении, перпендикулярном к граничному слою. В р-области основными носителями тока являются дырки, образовавшиеся в результате захвата электронов атомами примеси (акцепторы при этом становятся отрицательными ионами); кроме того, в этой области имеется небольшое число неосновных носителей — электронов, возникающих вследствие перевода тепловым движением электронов из валентной зоны непосредственно в зону проводимости (этот процесс немного увеличивает и число дырок). В n-области основные носители тока—электроны, отданные донорами в зону проводимости (доноры при этом превращаются в положительные ионы); происходящий за счет теплового движения переход электронов из валентной зоны в зону проводимости приводит к образованию небольшого числа, дырок — неосновных носителей для этой области. Диффундируя во встречных направлениях через пограничный слой, дырки и электроны рекомбинируют друг другом. Поэтому р—n-переход оказывается сильно обедненным носителями тока и приобретает большое сопротивление. Одновременно на границе между областями возникает двойной электрический слой, образованный отрицательными ионами акцепторной примеси, заряд которых теперь не компенсируется дырками, и положительными ионами- донорной примеси, заряд которых теперь не компенсируется электронами {рис; 9; кружки—ионы, черные течки — электроны, белые точки—дырки) . Электрическое поле