Ионно-сорбционная откачка
При ионно-сорбционной откачке используют два способа поглощения газа : внедрение ионов в объем твердого тела под действием электрического поля и химическое взаимодействие откачиваемых газов с тонкими пленками активных металлов .
Высокоэнергетические ионы или нейтральные частицы , бомбардируя твердое тело , проникают в него на глубину , достаточную для их растворения .Этот способ удаления газа является разновидностью ионной откачки . На рис. 1 показано равновесное распределение концентрации при ионной откачке в объеме неограниченной пластины толщиной , рассоложенной внутри вакуумной камеры .
Максимальную удельную геометрическую быстроту ионной откачки можно рассчитать по формуле (1) , где
– коэффициент внедрения ионов ;
=
– удельная частота бомбардировки ;
– плотность ионного тока ;
– элементарный электрический заряд ;
– молекулярная концентрация газа .
Коэффициент внедрения учитывает частичное отражение и рассеивание , возникающее при ионной бомбардировке . Коэффициент внедрения сильно зависит от температуры тела и слабо – от плотности тока и ускоряющего напряжения . Значение наблюдается для Ti , Zn при 300 … 500 К .
Максимальное значение концентрации растворенного газа при ионной откачке можно определить из условия равновесия газовых потоков : (2) ( D – коэффициент диффузии газа в твердом теле ) . Градиенты концентраций определяются следующими отношениями :
здесь
– глубина внедрения ионов (
– ускоряющее напряжение ) ;
и
– максимальная и начальная концентрация плотности поглощенного газа .
Так как величина мала по сравнению с
( константа
даже для легких газов не превышает 1.0 нм./кВ ) , то величиной
в уравнение (2) можно пренебречь :
.
Отсюда следует выражение для максимальной концентрации растворенного газа : .
Если величина , рассчитанная по приведенной формуле превышает максимально возможную в данных условиях растворимость газа в металле , то поглощенный газ начинает объединяться в газовые пузырьки , вызывая разрыв металла . Это явление получило название блистер-эффекта .
В нержавеющей стали водородный блистер-эффект наблюдается при поглощение м3*Па/см2 , что соответствует при быстроте откачки
м3/(с*см2) и давление
Па приблизительно 300 часов непрерывной работы .
По известному значению можно подсчитать общее количество газа , которое будет поглощено единицей поверхности
.
Во время ионной бомбардировки наблюдается распыление материала , сопровождающееся нанесением тонких пленок на электроды и корпус насоса . Сорбционная активность этих пленок используется для хемосорбционной откачки .
Распыление активного материала может осуществляться независимо от процесса откачки , например с помощью регулирования температуры нагревателя . Расход активного материала в таких насосах осуществляется независимо от потока откачиваемого газа .
Более экономно расходуется активный металл в насосах с саморегулированием распыления . В этих насосах распыление производится ионами откачиваемого газа , бомбардирующими катод , изготовленный из активного материала . Распыляемый материал осаждается на корпус и анод , где осуществляется хемосорбционная откачка .
Рис1. Установившееся распределение концентрации в неограниченной пластине , бомбардируемой высокоэнергетическими ионами .
![]() | |||
|
Оглавление
Ионно-сорбционная откачка 1
Рис1. Установившееся распределение концентрации в неограниченной пластине , бомбардируемой высокоэнергетическими ионами . 3
Оглавление 4
Используемая литература : 5
Используемая литература :
Л.Н. Розанов . Вакуумная техника .
Москва « Высшая школа » 1990 .
{ Slava KPSS }
Перейти на страницу: 1