Физико-химические методы исследования строительных материалов
Атомно-эмиссионный анализ (АЭА) основан на качественном и количественном определении атомного состава вещества путём получения и изучения спектров эмиссии атомов, входящих в состав вещества.
Пи АЭА анализируемая проба вещества вводится в источник возбуждения спектрального прибора. В источнике возбуждения данная проба подвергается сложным процессам, заключающимся в плавлении, испарении, диссоциации молекул, ионизации атомов, возбуждении атомов и ионов.
Возбуждённые атомы и ионы через очень короткое время (~10-7-108с) самопроизвольно возвращаются из неустойчивого возбуждённого состояния в нормальное или промежуточное состояние. Это приводит к излучению света с частотой и появлению спектральной линии.
Общую схему атомной эмиссии можно представить так:
А + Е А* А + h
Степень и интенсивность протекания этих процессов зависит от энергии источника возбуждения (ИВ).
Наиболее распространёнными ИВ являются: газовое пламя, дуговые и искровые разряды, индукционно связанная плазма (ИСП). Их энергетической характеристикой можно считать температуру.
Количественный АЭА основан на зависимости между концентрацией элемента и интенсивностью его спектральных линий, которая определяется формулой Ломакина:
,
где I - интенсивность спектральной линии определяемого элемента; c - концентрация; a и b - константы.
Величины a и b зависят от свойств аналитической линии, ИВ, соотношения концентраций элементов в пробе, поэтому зависимость обычно устанавливается эмпирически для каждого элемента и каждого образца. На практике обычно пользуются методом сравнения с эталоном.
При количественных определениях используют в основном фотографический способ регистрации спектра. Интенсивность спектральной линии, получаемой на фотопластинке, характеризуется ее почернением:
,
где S - степень почернения фотопластинки; I0 - интенсивность света проходящего через незачерненную часть пластинки, а I - через зачерненную, т.е. спектральную линию. Измерение почернения спектральной линии проводят по сравнению с почернением фона или по отношению к интенсивности линии сравнения. Полученная разность почернений (S) прямо пропорциональна логарифму концентрации (с):
S = K lgc.
При методе трех эталонов на одной фотопластинке фотографируют спектры трех эталонов с известным содержанием элементов и спектр анализируемого образца. Измеряют почернение выбранных линий. Строят градуировочный график, по которому находят содержание изучаемых элементов.
В случае анализа однотипных объектов применяют метод постоянного графика, который строят по большому числу эталонов. Затем в строго одинаковых условиях снимают спектр образца и одного из эталонов. По спектру эталона проверяют не произошло ли смещение графика. Если смещения нет, то неизвестную концентрацию находят по постоянному графику, а если есть, то величину смещения учитывают с помощью спектра эталона.
При количественном АЭА погрешность определения содержания основы составляет 1-5%, а примеси - до 20%. Визуальный метод регистрации спектра быстрее, но менее точен, чем фотографический.
По аппаратурному оформлению можно выделить АЭА с визуальной, фотографической и фотоэлектрической регистрацией и измерением интенсивности спектральных линий.
Визуальные методы (регистрация с помощью глаза) можно использовать только для исследования спектров с длинами волн в области 400 - 700 нм. Средняя спектральная чувствительность глаза максимальна для желто-зеленого света с длиной волны 550 нм. Визуально можно с достаточной точностью установить равенство интенсивностей линий с ближайшими длинами волн или определить наиболее яркую линию. Визуальные методы делятся на стилоскопические и стилометрические.
Стилоскопический анализ основан на визуальном сравнении интенсивностей спектральных линий анализируемого элемента (примеси) и близлежащих линий спектра основного элемента пробы. Например, при анализе сталей обычно сравнивают интенсивности спектральных линий примеси и железа. При этом используют заранее известные стилоскопические признаки, в которых равенству интенсивности линий определенной аналитической пары соответствует определенная концентрация анализируемого элемента.
Стилоскопы используют для экспресс-анализа, для которого не требуется высокой точности.6-7 элементов определяют за 2-3 мин. Чувствительность анализа 0,01-0,1%. Для анализа применяют как стационарные стилоскопы СЛ-3 . СЛ-12, так и переносные СЛП-1 . СЛП-4.
Стилометрический анализ отличается от стилоскопического тем, что более яркую линию аналитической пары ослабляют при помощи специального устройства (фотометра) до установления равенства интенсивностей обеих линий. Кроме того, стилометры позволяют сближать в поле зрения аналитическую линию и линию сравнения, что значительно повышает точность измерений. Для анализа применяют стилометры СТ-1 . СТ-7.
Относительная погрешность визуальных измерений 1 – 3%. Их недостатками являются ограниченность видимой области спектра, утомительность, отсутствие объективной документации о проведении анализа.
Фотографические методы основаны на фотографической регистрации спектра с помощью специальных приборов-спектрографов. Рабочая область спектрографов ограничена длиной волны 1000 нм, т.е. их можно использовать в видимой области и УФ. Интенсивность спектральных линий измеряют по степени почернения их изображения на фотопластинке или фотопленке.
Основные строительные материалы исследуемые физико-химическими методами. Строительные материалы и изделия, применяемые при строительстве,реконструкции и ремонте различных зданий и сооружений, делятся на природныеи искусственные, которые в свою очередь подразделяются на две основныекатегории: к первой категории относят: кирпич, бетон, цемент, лесоматериалыи др. Их применяют при возведении различных элементов зданий (стен,перекрытий, покрытий, полов). Ко второй категории - специальногоназначения: гидроизоляционные, теплоизоляционные, акустические и др. Основными видами строительных материалов и изделий являются: каменныеприродные строительные материалы из них; вяжущие материалы неорганические иорганические; лесные материалы и изделия из них; металлические изделия. Взависимости от назначения, условий строительства и эксплуатации зданий исооружений подбираются соответствующие строительные материалы, которыеобладают определёнными качествами и защитными свойствами от воздействия наних различной внешней среды. Учитывая эти особенности, любой строительныйматериал должен обладать определёнными строительно-техническими свойствами.Например, материал для наружных стен зданий должен обладать наименьшейтеплопроводностью при достаточной прочности, чтобы защищать помещение отнаружного холода; материал сооружения гидромелиоративного назначения –водонепроницаемостью и стойкостью к попеременному увлажнению и высыханию;материал для покрытия дорого (асфальт, бетон) должен иметь достаточнуюпрочность и малую истираемость, чтобы выдержать нагрузки от транспорта. Классифицируя материалы и изделия, необходимо помнить, что они должныобладать хорошими свойствами и качествами. Свойство – характеристика материала, проявляющаяся в процессе егообработки, применении или эксплуатации. Качество – совокупность свойств материала, обуславливающих его способностьудовлетворять определённым требованиям в соответствии с его назначением. Свойства строительных материалов и изделий классифицируют на три основныегруппы: физические, механические, химические, технологические и др. К химическим относят способность материалов сопротивляться действиюхимически агрессивной среды, вызывающие в них обменные реакции приводящие кразрушению материалов, изменению своих первоначальных свойств:растворимость, коррозионная стойкость, стойкость против гниения, твердение. Физические свойства: средняя, насыпная, истинная и относительнаяплотность; пористость, влажность, влагоотдача, теплопроводность. Механические свойства: пределы прочности при сжатии, растяжении, изгибе,сдвиге, упругость, пластичность, жёсткость, твёрдость. Технологические свойства: удобоукладываемость, теплоустойчивость,плавление, скорость затвердевания и высыхания. Физические и химические свойства материалов. Средняя плотность ?0 массы m единицы объёма V1 абсолютно сухого материалав естественном состоянии; она выражается в г/см3, кг/л, кг/м3. Насыпная плотность сыпучих материалов ?н массы m единицы объёма Vнпросушенного свободно насыпанного материала; она выражается в г/см3, кг/л,кг/м3. Истинная плотность ? массы m единицы объёма V материала в абсолютноплотном состоянии; она выражается в г/см3, кг/л, кг/м3. Относительная плотность ?(%) – степень заполнения объёма материала твёрдымвеществом; она характеризуется отношением общего объёма твёрдого вещества Vв материале ко всему объёму материала V1 или отношением среднейплотности материала ?0 к её истинной плотности ?: [pic], или [pic]. Пористость П - степень заполнения объёма материала порами, пустотами,газо-воздушными включениями: для твёрдых материалов: [pic], для сыпучих: [pic] Гигроскопичность - способность материала поглощать влагу из окружающейсреды и сгущать её в массе материала. Влажность W(%) – отношение массы воды в материале mв=m1-m к массе его вабсолютно сухом состоянии m: [pic] Водопоглащение В – характеризует способность материала при соприкосновениис водой впитывать и удерживать её в своей массе. Различают массовое Вм иобъёмное Во водопоглащение. Массовое водопоглащение (%) – отношение массы поглощённой материалом водыmв к массе материала в абсолютно сухом состоянии m: [pic] Объёмное водопоглащение (%) – отношение объёма поглощённой материалом водыmв/?в к его объёму в водонасыщенном состоянии V2: [pic] Влагоотдача – способность материала отдавать влагу.
Перейти на страницу: 1 2 3 4 5 6 7 8