Что изучает физика?
Первая модель атома, предложенная В.Томсоном и затем Д.Томсоном, включала шарообразное облако положительного заряда, внутри которого находятся электроны, расположенные в этом облаке концентрическими кольцами. Данная модель просуществовала недолго. Но это был первый шаг в раскрытии структуры атома. Следующие модели атома появились уже в ХХ веке (модель Э.Резерфорда и модель Н.Бора).
Открытие рентгеновских лучей было случайным. Открытие радиоактивности, последовавшее вслед за открытием рентгеновских лучей, также оказалось случайным. А.Беккерель пытался установить, не излучаются ли подобные лучи другими телами. Из различных веществ, которыми он располагал, Беккерель случайно избрал соли урана. лучи, исходящие из урана, были радиоактивными, причем получались без каких-либо устройств - они испускались самим радиоактивным веществом. Пьер и Мария Кюри выделили еще более сильные радиоактивные элементы - полоний и радий. Э.Резерфорд, изучая характер радиоактивного излучения, открывает альфа-лучи и бета-лучи и объясняет их природу. М.Планк установил. что атомы отдают энергию не непрерывно, а порциями, т.е. существование предельного количества действия, контролировавшего количественно все энергетические обмены в атомных системах (постоянная Планка - h, равная 6,6×10-27 эрг/сек. К.Лоренц создает электронную теорию, синтезировавшую идеи теории поля атомной теории. И хотя первоначально он не употребляет термина "электрон", а говорит о положительно и отрицательно заряженных частицах вещества. открытие радиоактивности и превращения атомов поколебало физические и химические представления XIX века. Это касалось закона неизменных элементов, установленного Лавуазье. Самопроизвольный радиоактивный распад в условиях отсутствия опытных данных о синтезе новых атомов мог истолковываться как односторонний процесс постепенного разрушения вещества во Вселенной. Открытие первой субатомной частицы - электрона - выглядело аргументом в пользу отвергнутых представлений об электрической субстанции. Казалось, что был поставлен под сомнение и закон сохранения энергии. Возникшая ситуация свидетельствовала о том, что новые экспериментальные факты не укладываются в существовавшую физическую парадигму. Таким образом, обозначились истоки революционных преобразований в физических концепциях. Первый этап этих преобразований начался в конце XIX века. Последующие этапы развертывались уже в XX веке.
ОСНОВНЫЕ КОНЦЕПЦИИ ФИЗИКИ ХХ ВЕКА
1. Революция в физике
Физика XIX века представляла собой основанную на механике Ньютона систему знаний, которая создателям этой системы представлялась почти завершенной. Революция в физике уже в самом начале ХХ века выявила ограниченность классической механики, чем поставила под сомнение истинность подобных представлений. Классическая физика, исходя из заложенного Декартом идеала, представляла Вселенную в виде механической системы, поведение которой можно абсолютно точно предсказать, если известны параметры, которые определяют начальное состояние этой системы. Иными словами, основные утверждения классической механики имеют вполне определенный и однозначный характер. Разного рода неопределенности и неоднозначности, могущие иметь место при измерении величин, объясняются в ее рамках неизбежными погрешностями, сложностью процедуры измерения и т.п.
Подобная картина основывалась на предположениях, которые считались совершенно очевидными. Первое заключалось в том, что мы живем в жестком и определенном мире, в котором любое явление может быть строго локализовано, и что все развитие физического мира есть изменение положения тел в пространстве с течением времени. Второе исходило из возможности сделать пренебрежимо малым возмущение естественного хода изучаемого процесса, вносимое процедурой осуществления эксперимента. Как оказалось, оба предложения могут быть справедливыми лишь для определенных условий.
Открытие кванта действия выявило противоречие между концепцией строгой локализации и концепцией динамического развития. Каждая из этих концепций, взятая в отдельности от другой, может быть успешно использована для изучаемых явлений, но, будучи одновременно использованными, они не дают точных результатов. Обе они - своего рода идеализация: первая - статистическая, исключающая всякое движение и развитие, вторая - динамическая, исключающая понятие точного положения в пространстве и момента времени. В классической механике перемещения в пространстве и определение скорости изучаются вне зависимости от того, каким образом физически эти перемещения реализуются. От абстрактного изучения законов движения можно переходить к динамике. Применительно к явлениям микромира подобная ситуация, как выявилось, невозможна принципиально. Здесь пространственно-временная локализация, лежащая в основе кинематики, возможна лишь для некоторых частных случаев, которые зависят от конкретных динамических условий движения. В макромасштабах использование кинематики вполне допустимо. Для микромасштабов, где главная роль принадлежит квантам, кинематика, изучающая движение вне зависимости от динамических условий, теряет смысл.
Для масштабов микромира и второе положение оказывается несостоятельным - оно справедливо лишь для явлений большого масштаба. Выявилось, что попытки измерить какую-либо величину, характеризующую изучаемую систему, влечет за собой неконтролируемое изменение других величин, характеризующих данную систему: если предпринимается попытка установить положение в пространстве и времени, то это приводит к неконтролируемому изменению соответствующей сопряженной величины, которая определяет динамическое состояние системы. Так, невозможно точно измерить в одно и то же время две взаимно сопряженные величины. Чем точнее определяется значение одной величины, характеризующей систему, тем более неопределенным оказывается значение сопряженной ей величины. Это обстоятельство повлекло за собой существенное изменение взглядов на понимание детерминизма, уровней организации реальности.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43