Рефераты по Физике

Электрокинетические явления при фильтрации жидкости в пористой среде

Страница 2

(1.8)

или

(1.8а)

Для оценки степени участия в потоке электроосмических процессов в зависимости приложенного потенциала можно также использовать соотношение Компрессорное масло лукои стабио 46 купить масло компрессорное лукойл стабио 46 купить.

(1.9)

Принципиальная возможность повышение скорости фильтрации за счет электроосмоса доказано экспериментально. Однако многие вопросы приложения электрокинетических явлений в нефтепромысловой практике недостаточно изучены.

Как следует, из уравнения Гельмгольца-Смолуховского, интенсивность электроосмоса зависит в значительной мере от ζ – потенциала, который обладает характерными свойствами, зависящими от строения диффузного слоя. Особый интерес для промысловой практики представляет зависимость значения ζ – потенциала от концентрации и свойств электролитов. Сопровождается уменьшением толщины диффузного слоя и снижением электрокинетического потенциала. При некоторой концентрации электролита скорость электрокинетических процессов становиться равной нулю.

Электрокинетический потенциал может при этом не только быть равным нулю, но и приобретать противоположный знак. Это явление наблюдается при значительной адсорбции ионов на поверхности когда общий заряд ионов в плотном слое может оказаться больше заряда поверхности твердого тела.

2. Потенциал и ток течения фильтрации жидкости в пористой среде. Методы их экспериментального исследования

Проницаемость пористой среды определялась для радиальной фильтрации по формуле

(2.1)

где η – вязкость жидкости,

Q – расход жидкости,

D – наружный диаметр керна,

d – внутренний диаметр керна,

h – высота керна,

∆p – перепад давления между входом и выходом пористой среды.

Как следует из теории Гельмгольца-Смолуховского, потенциал протекания описывается формулой

, (2.2)

где ε – диэлектрическая проницаемость жидкости,

∆p – перепад давления,

ζ – электрический потенциал,

δ- удельная электропроводимость,

η – вязкость,

а ток течения

(2.3)

где Q – расход жидкости в единицу времени.

Сравнивая формулы (2.2) и (2.3) можно получить:

(2.4)

Как видно из этих формул, электрокинетические явления в насыщенных пористых средах можно изучать, измеряя потенциал или ток протекания. Для воды измеряется потенциал протекания, а для трансформаторного масла – ток течения.

Уменьшение потенциала ведет к уменьшению электрокинетических сил, противодействующих движению, а, следовательно, расход постепенно увеличивается. Одновременно с этим происходит увеличение вязкости жидкости по квадратичному закону, в соответствии с формулой (2.2) происходит еще большее уменьшение потенциала протекания. Увеличение вязкости ведет к уменьшению расхода.

Однако, по мере увеличения напряженности поля, происходит утолщение двойного электрического слоя и диффузионной части за счет энергии внешнего электрического поля, к увеличению ζ – потенциала, а, следовательно, к увеличению потенциала протекания. Для трансформаторного масла наоборот. Таким образом, можно сделать вывод, что изменение напряженности внешнего электрического поля, перпендикулярного потоку можно управлять расходом жидкости и потенциалом, или током течения, а, следовательно, и свойствами двойного электрического слоя.

3. электрокинетические явления при воздействии внешнего электрического поля

При воздействии электрических полей на двойной электрический слой, показывает, что при движении жидкости вблизи межфазной поверхности в электрическом поле, возникает ряд явлений, из которых можно отметить некоторые моменты. В электролите внешнее электрическое поле вызывает движение ионов. В двойном слое существует местное преобладание ионов одного знака. Вследствие этого под действием внешнего электрического поля движение ионов происходит в одном направлении, что вызывает механическое перемещение жидкости. Сила воздействия электрического поля на двойной электрический слой описывается соотношением:

(3.1)

где ρe – плотность заряда в диффузном слое;

E – напряженность электрического поля.

Профиль скорости при наличии электрического поля существенно отличается от профиля скорости при отсутствии движущихся сил в двойном электрическом слое.

При движении жидкости у границы раздела фаз в двойном слое возникает перенос зарядов - ток переноса. Этот ток компенсируется возвратным током проводимости. Взаимодействие тока с равномерным магнитным полем вызывает дополнительное движение жидкости вдоль направления движения.

При наложении скрещенных электрического и магнитного полей дополнительно возникает движение, обусловленное взаимодействием токов.

Зависимость явлений переноса вблизи поверхности раздела фаз от свойств двойного слоя, с одной стороны, и возможность в известных пределах управлять движением и свойствами двойного слоя, с другой стороны – позволяют управлять процессами обмена между фазами и, в частности, интенсифицировать их. Большой эффект в интенсификации процесса следует ожидать при использовании двух жидких фаз. Действием электрического поля и магнитного поля можно заставить межфазную поверхность двигаться в желаемом направлении со значительной скоростью. Движение межфазной поверхности и прилегающих слоев приводит к интенсивному перемешиванию жидкости в каждой из фаз, что также способствует интенсификации обмена.

Перейти на страницу:  1  2  3  4