Электронно-дырочный переход
Величина напряжения пробоя зависит от рода материала. Когда приложенное напряжение приближается к напряжению пробоя, коэффициент размножения носителей резко возрастает, растет число носителей заряда в переходе, сильно увеличивается ток через переход, наступает лавинный пробой. https://profnastilsimferopol.ru купить профнастил для забора в симферополе.
При значительных напряженностях электрического поля (порядка 200 кВ/см), возможен туннельный пробой, обусловленный прямым переходом электронов из валентной зоны в зону проводимости смежной области, происходящим без изменения энергии электрона.
Практически при электрическом пробое могут иметь место в той или иной степени одновременно оба вида пробоя – туннельный и лавинный.
Величина напряжения пробоя существенно зависит от состояния поверхности перехода, где могут образовываться заряды того или иного знака, которые уменьшают или увеличивают результирующую напряженность поля у поверхности по сравнению ее значением в объеме. В неблагоприятном напряжении пробоя по поверхности может быть в несколько раз ниже, чем по объему. Это еще раз подчеркивает важность стабилизации свойств поверхности полупроводника, защиты ее от воздействий окружающей среды.
Тепловой пробой.
Тепловой пробой диода возникает вследствие перегрева перехода проходящим через него током при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.
В режиме постоянного тока мощность, подводимая к переходу, определяется обратным напряжением и обратным током:
.
Эта мощность идет на разогрев перехода, в результате чего температура перехода возрастает. При этом увеличиваются концентрации носителей заряда в p-n-структуре и обратный ток перехода, что в свою очередь приводит к увеличению подводимой мощности, новому повышению температуры перехода и т. д.
Выделяющееся тепло в переходе рассеивается преимущественно за счет теплопроводности, поэтому отводимая от перехода мощность пропорциональна разности температур перехода и окружающей среды:
,
где RT – общее тепловое сопротивление диода.
Вольтамперная характеристика диода в режиме теплового пробоя соответствует кривой б на рис.#. Она имеет падающий характер, так как вследствие повышения температуры перехода концентрация носителей заряда в нем сильно увеличивается и электрическое сопротивление перехода уменьшается относительно быстрее, чем растет ток перехода.
Емкости диода.
Полупроводниковый диод обладает емкостными свойствами, т.е. способностью накапливать и соответственно отдавать заряд при увеличении или уменьшении приложенного напряжения. Накопление заряда происходит в переходе и базе диода, в соответствии с этим различают две емкости диода - барьерную и диффузионную. При этом:
Барьерная емкость.
Для резкого p+-n-перехода объемный заряд в переходе
При изменении напряжения на переходе изменяется его толщина, а следовательно, и заключенный в переходе нескомпенсированный заряд, что и обусловливает емкостный эффект. Барьерной емкостью (емкостью перехода) называют отношение приращения заряда на переходе dQд к вызвавшему его приращению напряжения du:
(*)
Отсюда следует, что барьерная емкость пропорциональна площади перехода П и возрастает при увеличении концентрации примесей. Кроме того, она зависит от напряжения перехода, т. е. является нелинейной емкостью. Обозначим начальное значение барьерной емкости (при u=0) через
Тогда общее выражение (*) можно записать в виде
(**)
График зависимости Cб/C0=f(u)для диода с резким переходом
представлен на рис (кривая Б). Из рисунка видно, что при увеличении обратного напряжения емкость перехода падает. Упрощенно эту зависимость можно пояснить следующим образом. Полупроводниковая p-n-структура представляет собой как бы электрический конденсатор, обкладками которого являются р- и n-области, а диэлектриком — электронно-дырочный переход, практически не имеющий подвижных зарядов. При увеличении обратного напряжения толщина перехода возрастает, обкладки конденсатора как бы раздвигаются и емкость его падает.
Соотношение (**) справедливо только для структур с резким переходом. В общем случае зависимость емкости от приложенного напряжения может быть записана в виде
,
где лежит в пределах от 1/2 до 1/3 в зависимости от концентрационного профиля перехода.
Значения С0 в тонких переходах могут доходить до 300—600 пФ, а изменение емкости при изменении напряжения может быть десятикратным.
Диффузионная емкость.
При переходе в область прямых напряжений возрастает не только барьерная емкость диода, но и емкость, обусловленная накоплением неравновесного заряда в р- и n-областях структуры. В несимметричной р+-n-структуре неравновесный заряд, как указывалось, накапливается в базе:
(***)
Связанная с накоплением неравновесного заряда емкость диода называется диффузионной; она характеризует изменение неравновесного заряда в базе dQn при изменении напряжения диода на величину du. Из выражения (***) получаем для
(****)
Эта емкость существенно отличается от обычной электрической емкости тела, характеризующей накопление равновесных зарядов. Диффузионная емкость характеризует накопление неравновесного заряда, при этом разноименные заряды накапливаются в одном и том же объеме, так как одновременно с инжекцией дырок из эмиттерного перехода в базу поступают электроны из вывода базы, чем обеспечивается сохранение электрической нейтральности тела базы. Вследствие процесса рекомбинации накопленный заряд, а следовательно, и диффузионная емкость быстро уменьшаются во времени. Скорость спада зависит от времени жизни неравновесных носителей заряда и толщины базы.
Перейти на страницу: 1 2 3 4 5