Концепции макромира классической физики и концепции микромира современной науки
В иерархии структур материальных систем ядро атома, атом, молекула, макроскопические тела сами создают структурный единый уровень. Поэтому элементы тела по сравнению с элементами следующего уровня являются более простыми, выступают как их составные части. С другой стороны они являются более сложными по сравнению с элементами, расположенными на более низких уровнях и являющимися их составными частями.
Все системы, начиная с ядра атома до тех самых больших размеров, обладают таким свойством: в каждой из них можно отделить структурные элементы, формирующие рассматриваемые тела и являющиеся более простыми по сравнению с элементами на более низком уровне на составляющие его части. По своему значению процессы объедения и разделения одинаковы. Например молекулы данного химического вещества состоят из определенного количества атомов и могут распасться на них в определенных условиях. В этом случае масса сложного целого больше массы каждой составляющей его части. Это последнее положение не верно для элементарных частиц. Так, продукты распада элементарных частиц не являются проще делимых, ещё точной «преобразующихся» частиц. Они также являются элементарными частицами. Согласно современным представлениям продукты распада вместе порождающими их частицами располагаются на едином уровне иерархии. Например, нейтрон в определённых условиях делится на протон, электрон и антинейтрона (n0 ®p+ + e- + ). Хотя нейтрон не сложнее и не проще протона, электрона и антинейтрона. Кроме того, протон и электрон можно получить и в результате других реакций. Поэтому можно сказать, что возможность каждой элементарной частицы состоит в том, что она может быть «составной частью» других элементарных частиц.
С другой стороны, не так важно чтобы на каждым элементарном уровне целое состояло бы такого большого скопления. В этом случае масса целого может быть даже в несколько раз меньше масс его составляющих. Например, в целом ряде случаев в результате объедения нюклона и антинюклона получается мезон, масса которого меньше массы любого из них. Эта аномалия объясняется тем, что во время создания элементарной частицы масса, поглощающая выделенную энергию , может быть настолько велика, что в результате продукты реакции вовсе не похожи на исходную частицу. Поэтому в мире элементарных частиц понятия «простой и сложный», «составная часть», «структура», «целый» приобретают совсем другое значение, нежели в атомной физике и в классической физике.
Специфика элементарных частиц также проявляется в энергетических взаимных влияниях. Начиная макроскопическими объектами и кончая ядром атома энергия всех материальных систем формируется из двух составляющих: особой, соответствующей массе тела (Е=mc2) и энергии связи составляющих его элементов. Не смотря на то, что эти виды энергии неотделимы друг от друга, они полностью отличаются по своей природе. Специальная энергия объектов намного превосходит энергию их связи, ее можно отделить всё составляющую часть. Например, за счёт внешней энергии молекулу можно разделить на атомы (Н2О®Н+О+Н), однако в этом случае в самих атомах не произойдет изменение, бросающееся в глаза.
В элементарных частицах эта проблема приобретает другой вид. Вся энергия элементарных частиц не делится на специальную и связующую. Поэтому не смотря на то, что элементарные частицы не обладают внутренней структурой, они не могут делиться на составляющие их части. Элементарные частицы не содержат внутренних частиц, остающихся в большей или в меньшей степени неизменными.
Согласно современным представлениям структура элементарных частиц описывается посредством беспрерывно рождающихся и беспрерывно делящихся «виртуальных» частиц. Например, аннигиляция мезона (от латинского слова «annihilatio» - уничтожение) формируется из беспрерывно создающихся и затем исчезающих виртуальных нуклонов и виртуальных антинуклонов. Формальные выдвижение понятия виртуальной частицы показывает, что внутреннюю структуру элементарных частиц не возможно описать посредством других частиц.
Пока не создана удовлетворяющая физиков теория происхождения и структуре элементарных частиц. Целый ряд видных ученых пришли к мысли о том, что эту теорию можно создать, принимая во внимание только космические условия. Идея о зарождении элементарных частиц из вакуума в силовом, электромагнитном и гравитационном полях приобретает существенное значение. Потому что взаимосвязь микро, макро – и мегамира находит воплощение только в этой идее. В мегамире структура и взаимные превращения элементарных частиц обусловлены фундаментальными взаимовлияниями. Очевидно, что для того чтобы адекватно описать структуру материального мира, необходимо разработать аппарат новых понятий.
[1] См.: Маковелский. Древнегреческие атомисты. Баку, 1946.
[2] См.: Кудрявцев. Курс истории физики. М., Просвещение, 1974, с.179.
[3] См.: Философия естествознания. М., 1966, с.45; Е.М.Балабанов. В глубь атома, М., 1967.
[4] См.: Философия и естествознание. М., 1964, с.74-75; С.Т. Мелюхин. К философской оценке современных представлений поля и вещества. В кн.: Диалектический материализм и современное естествознание, М., 1957, с. 124-127.
[5] См.: Кузнецов Б. Пути физической мысли. Изд. «Наука», М., 1968, с. 296-298
[6] См.: Ахизер А.И., Рекало М.П. Биография элементарных частиц, Киев, 1978.
[7] См.: Станюкович К.П., Лапчинский В.Г. Систематика элементарных частиц.
В Кн.: О систематике частиц, М., 1969, с.74-75.
[8] См.: Балабанов Е.М. В глубь атома. М., 1967, с.38-39.
[9] См.: Новожилов Ю.В. Элементарнык частицы. М., 1974; Спроул Р. Современная физика. М., 1974;
Содди Ф. История атомной энергии. М., 1979.
[10] См.: Готт В.С. О неисчерпаемости материального мира. М., «Знание», 1968, с.31.
[11] см.: Князев В.Н. Концепции взаимодействия в современной физике. М.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10