Исследование систем возбуждения электроразрядных эксимерных лазеров
Ne1014-1015см-3.
Формирование однородного наносекундного разряда в газе атмосферного даления с указанной плотностью электронов представляет серьезную техническую проблему, решению которой и посвящено большинство работ по эксимерным лазерам с электроразрядным возбуждением. В случае возбуждения лазеров на димерах инертных газов, где оптимальные значения плотности газа состовляют десятки атмосфер, указанная проблема не нашла сиоего решения, так что электрический разряд используется только для возбуждения эксимерных лазеров на моногалогенидах инертных газов. В частности, для возбуждения эксимерных лазеров широко используются такие устройства, как разряд с поперечным возбуждением, разряд с предварительным инциированием дополнительным источником ионизации, таким как фотоионизирующее излучение електронный пучок небольшой мощности, разряд бегущей волны или линия Блюмляйна. Конструктор бота магазина телеграм девять платформ для создания чат бот магазина.
Основным параметром, определяющим эффективность эксимерного лазера с электроразрядным возбуждением, является отношение напряженности електрического поля к плотности буферного газа . При малых E/N мала константа скорости возбуждения атома инертного газа электронным ударом. При больших E/N имеет место эффекивное возбуждение одновременно большого состояницй атома инертного газа а также его ионизация, что ведет к резкому снижению коэфициента преобразования вводимой энергии в энергию метастабильных атомов инертного газа. Оптимальные значения E/N оказываются порядка 10-15всм3. При давлении порядка атмосферного это соответствует значениям напряженностей электрического поля, лежащим вобласти 104-105 в/см. легко увидеть,что подобные значения напряженностей технически несложно могут быть реализованы лишь при сравнительно небольших электродных расстояниях порядка нескольких сантиметров. Отсюда следует необходимость использования электрического поля приложенного поперёк лазерной трубки.
Наиболее эффективный способ преодоления трудностей, возникающих при осуществлении и поддержания в газе высокого давления однородного по объему импульсного разряда, состоит в использовании дополнительрого источника ионизации. После создания с помощью такого источника однородной по объему слабоионизированной плазмы к разрядному промежутку прикладывается электрическое поле, амплитуда которого уже не связана с условиями пробоя, а выбирается из условия оптимальрого возбуждения лазера. В качестве дополнительного источника ионизации эффективно используется как фотоионизируещее ультро фиолетовое излучение, так и маломощрый пучок быстрых электронов. Указанные источники дополнительной ионизации обеспечивают значение плотности электронов в активной среде~109-1013см-3. Поэтому для достижения порогового значения плотности электронов Ne~1014-1015см-3.Необходимо обеспечить такое отношение, при котором за время импульса успевает произойти увеличение плотности электронов на несколько порядков. Отсюда может быть получена оценка оптимального значения.
Во-первых, высокое давление буферного газа еозволяет обеспечить достаточно быстрое решение обьемной ионизации и обеспечение оптимальных значений потока электронов. Во-вторых, использование независимых источников начальной ионизации дает возможность резко снизить величину напряжения питания, устанавливая ее на уровне оптимальном с точки зрения возбуждения инверсной заселенности. Наконец, в качестве последней особенности электроразрядного возбуждения эксимерного лазера, отметим, что плотность того инертного газа, из которого образуется эксимерная молекула, может быть много меньше плотности буферного газа.
Дальнейшее увеличение плотности инертного газа N, участвующего в образовании эксимерных молекул, приводит к увеличению скорости образования возбужденных атомов и, казалось бы, способствует увеличению выходных параметров лазера. Однако, возникающие при этом накопления возбужденных атомов в активной среде вызывает изменение характера ионизации: вместо прямой ионизаци на первый план выступает ступенчатая ионизация, эффективность которой резко возрастает с ростом плотности возбужденных атомов. Это приводит к развитию неустойчивости, сопровождающейся лавинообразным ростом плотности электронов. В условиях эксимерного лазера, когда в газе имеется малая электроотрицательная примесь, указанная неустойчивость развивается при достаточно высокой плотности возбужденных атомов инертного газа, когда характерное время ионизации возбужденного атома меньше удвоенного времени прилипания электрона. Как показывают детальные численные расчеты, припревышении определенного значения плотности возбужденных атомов неустойчивость указанного типа приводит к резкому снижению доли энергии, идущей на образование метастабилей инертного газа.
Эффективность электроразрядного способа возбуждения эксимерных лазеров примерно столь же высока, что и в случае возбуждения электронным пучком. Это связано с тем обстоятельством, что в условиях оптимального возбуждения доля вводимой энергии, которая преобразуется в энергию возбужденных атомов, в случае импульсного разряда в инертном газе очень велика и может составлять десятки процентов. В результате КПД таких лазерных систем нередко оказывается около процента, а в отдельных случаях его значение превыает 10%.
1.3. Общая характеристика систем предыонизации
Одним из важнейших факторов, влияющих на работу электроразрядных эксимерных лазеров, является предыонизация активной среды. Она оказывает существенное влияние на устойчивость разряда, его однородность, длительность объемной стадии, стабильность генерации и ресурс работы лазера. В показано, что предварительное ультрафиолетовое (УФ) облучение газового объема сокращает время развития пробоя, способствует формированию объемного разряда. С увеличением интенсивности облучения уменьшается напряженность поля, при которой возникает диффузный разряд. Происходит это потому, что УФ-ионизация создает некоторое начальное количество свободных электронов, которые становятся центрами инициирования разряда. Для всех газоразрядных лазеров, использующих поперечный разряд, важное практическое значение имеет решение вопроса о минимальной плотности электронов предыонизации и однородности их распределения, необходимой для формирования однородного разряда. В случае малого количества начальных электронов происходит независимое развитие рождаемых ими лавин. В окрестности каждой лавины нарастает искажение внешнего поля потенциалом пространственного заряда, который возникает в ходе ионизационного размножения частиц в лавине. После прохождения лавиной некоторого критического расстояния она порождает стример. Формирование однородного разряда достигается в случае, когда пробой газоразрядного промежутка происходит при одновременном развитии множества электронных лавин и их взаимном перекрытии до того, как они пройдут критическое расстояние. При этом искажающее действие поля пространственного заряда каждой отдельной лавины будет подавлено коллективным действием остальных лавин во всем объеме. Известно, что существует критическое расстояние между начальными электронами предыонизации, которое определяет минимальное значение концентрации электронов предыонизации в разрядном объеме.
Перейти на страницу: 1 2 3 4 5 6 7 8