Рефераты по Физике

Источники искусственного освещения

Страница 4

Срок службы большинства ламп составляет 10000-15000 ч. Некоторые производители объявляют для отдельных типов НЛВД срок службы в 20000 ч.

Наименьшую световую отдачу среди рассмотренных разрядных ламп имеют лампы ДРЛ: 40-60 лм/Вт, наибольшую НЛВД – до 120 лм/Вт. Лампы МГЛ занимают промежуточное положение: их световая отдача составляет от 60 до 100 лм/Вт. Световая отдача ламп растёт с увеличением мощности.

Традиционные области применения ламп ДРЛ: освещение открытых территорий, производственных, сельскохозяйственных и складских помещений. Везде, где это связано с необходимостью большой экономии электроэнергии, эти лампы постепенно вытесняются НЛВД (освещение городов, больших строительных площадок, высоких производственных цехов и др.). Основные области применения МГЛ: открытые и закрытые спортсооружения, некоторые помещения зального типа в общественных зданиях, высокие производственные цеха с высокими требованиями к цветопередаче. Небольшие по мощности лампы всех типов могут успешно применяться для освещения придомовой территории, гаража, а также для дежурного освещения. МГЛ и НЛВД с улучшенной цветопередачей мощностью до 70-100 Вт начинают вытеснять лампы накаливания и люминесцентные лампы из сфер их применения в общественных и жилых зданиях. Все типы ламп с успехом используются для наружного освещения и светового оформления городов (фасады зданий, фонтаны, памятники, зелёные насаждения и др.)

Оптоволокно

Волоконно-оптические технологии в освещении применяются уже несколько десятилетий, но до сих пор считаются экзотикой. Между тем, применение оптоволокна позволяет легко и элегантно решать сотни технических проблем, возникающих при разработке световых проектов, а во многих случаях вообще является единственно возможным решением.

И это совершенно не удивительно, если принять во внимание чудесную сущность оптоволоконной технологии освещения, позволяющей управляться со светом, как с джином из бутылки: загнать его внутрь гибкого световода, провести сквозь стены, через землю и воду, огибая углы и обходя препятствия, а когда необходимо – извлечь в нужных количествах и использовать по назначению. Помогает «повелевать» светом физическое явление многократного полного внутреннего отражения. Конструктивной основой гибких волоконных световодов являются стеклянные оптические волокна, которые выпускаются со специальными добавками, обеспечивающими их стойкость к поражению грибками, плесенью и водорослями, а также с добавками против вредного воздействия ультрафиолетового излучения. Волокно состоит из сердцевины, выполненной из мягкого материала, и более твёрдой оболочки. Разные материалы по-разному преломляют свет, что и заставляет работать физику полного внутреннего отражения: сердцевина должна иметь больший показатель преломления, чем оболочка. Стеклянное оптоволокно давно применяется в телекоммуникации для передачи данных с высокой скоростью. Большие надежды возлагаются сейчас на полимерные волокна (POF – plastic optic fiber), которые примерно вдвое дешевле стеклянных. Пластик не подходит для создания высокоскоростных линий передачи данных, но вполне пригоден для расстояний порядка нескольких десятков метров. Поэтому предполагается, что полимерное оптоволокно станет основой для очередной революции в домашних сетях – создания интеллектуального дома нового поколения. Сеть на основе POF объединит все управляющие и обслуживающие системы дома с мультимедийными хранилищами аудиовизуальной и любой другой информации. В случае успеха такого проекта цена на полимерное оптоволокно, естественно, упадёт, что приведёт, помимо прочего, к ухудшению систем оптоволоконного освещения, главным недостатком которых является пока относительно высокая стоимость. Впрочем, это – будущее, а настоящим следует признать тот факт, что уже сегодня пластиковое волокно широко применяется в освещении, оставив стекло далеко позади по объёмам продаж.

Волокна бывают различных диаметров, причём чем тоньше волокно, тем легче его сгибать, поэтому использование световода (оптоволоконного кабеля), объединяющего несколько волокон, является более практичным, чем применение одного волокна большего диаметра. Для механической защиты волокон в световоде употребляется пластиковая оболочка, сходная с изоляцией обычного кабеля (ПВХ, меголон и т.д.). В случае значительных механических нагрузок применяется двойная оболочка. Световоды бывают двух типов – торцевого и бокового свечения. Оптоволоконные кабели торцевого свечения работают по классической схеме передачи света с минимальными потерями в заданную точку пространства. Принцип действия кабелей бокового свечения, наоборот, основан на «побочном эффекте» свечения оптоволокна, возникающем из-за потерь при внутреннем отражении, когда часть света проходит наружу (это происходит при изгибе волокна, когда угол падения лучей меньше предельного и фактически внутреннее отражение становится не полным, а частичным. В световодах бокового свечения используются такие же волокна, как и в кабелях торцевого свечения, только они особым образом скручены или переплетены. При этом применяется прозрачная гибкая оболочка, и свет становится хорошо видным, создавая боковое свечение вдоль световода.

Волоконная оптика:

Как работает оптоволоконное освещение?

Свет входит из проектора в один из концов оптоволоконного световода, доставляется в нужную точку пространства, распространяясь внутри волокна благодаря явлению полного внутреннего отражения, и свободно излучается другим концом световода.

Эффективно ли оптоволоконное освещение?

Эффективность оптоволоконной системы освещения не превышает 15-20%.

На первый взгляд, традиционное освещение значительно более эффективно: типичное значение светового КПД обычных световых приборов -50-70%.

Однако следует учитывать, что для традиционных осветительных установок характерны большие световые потери, когда часть излучаемого света теряется в пространстве или даже приводит к нежелательной (паразитной) засветке. При этом общий КПД установки с учётом так называемого коэффициента использования светового потока может быть значительно ниже, и обеспечиваемые оптоволоконной системой 15% становятся вполне конкурентоспособным результатом.

Перейти на страницу:  1  2  3  4  5  6