Квантовые свойства макроскопических объектов
Применение КЭ.
Приборы КЭ имеют ряд характерных особенностей, отличающих их от электронных приборов других типов. Так молекулярные генераторы СВЧ диапазона обладают исключительно высокой стабильностью частоты колебаний ~10-13 (например, часы на основе такого генератора «уйдут» на 3 секунды за 1 млн. Лет). Квантовые парамагнитные усилители СВЧ имеют рекордно низкий уровень собственных шумов (не св. 10 К) по сравнению с усилителями других типов и поэтому применяются в устройствах радиоастрономии, системах дальней космической связи. На основе лазеров возникли новые области науки и техники: нелинейная оптика, лазерная химия, лазерная технология, голография, лазерная медицина, лазерная интерферометрия и др. Мощный направленный лазерный пучок, сфокусированный на поверхности любого вещества, способен расплавить и испарить его. Это явление лежит в основе многих технологических применений лазеров. Лазерный луч служит незаменимым инструментом интерферометрических измерений с высокой точностью, примерно сравнимой с размерами атомов и молекул. Способность активной среды некоторых лазеров накапливать энергию возбуждения и затем излучать её в виде короткого (10-7—10-9) импульса с недостижимой прежде мощностью (109—1010Вт) легла в основу лазерной импульсной локации и дальнометрии. Чрезвычайно малая расходимость лазерного излучения (примерно на 4 порядка меньше, чем у СВЧ излучения при сравнимых диаметрах антенных систем) делает возможным его передачу на огромные расстояния, недостижимые для радиолокации. Инжекционные ПП лазеры, непосредственно преобразующие электрический ток в когерентное оптическое излучение, являются самыми миниатюрными приборами КЭ, на основе которых развиваются такие важные направления электроники, как оптоэлектроника, системы записи и считывания информации. Лазеры активно вторглись в технологию современной микроэлектроники (процессы подгонки резисторов, контроля микросхем, скрайбирования и отжига кремниевых пластин, фотолитографии и т. д.). Лазеры получили применение и в военном деле. Производство приборов КЭ в промышленно развитых странах сформировалось в крупную отрасль промышленности.
Электрическое строение молекул.
Химики называют молекулой мельчайшего представителя вещества. Физики большей частью пользуются этим словом лишь в том случае, если этот мельчайший представитель реально существует как отдельное маленькое тело.
Существует ли молекула поваренной соли? Поваренная соль (NaCl) — это хлористый натрий. Молекула состоит из одного атома натрия и одного атома хлора. Однако этот ответ лишь формально справедлив. На самом же деле ни в кристалике поваренной соли, ни в растворе соли в воде, на в парах хлористого натрия мы не обнаруживаем пары атомов, которая вела бы себя как одно целое. В кристалле каждый атом натрия окружен шестью хлорными соседями. Все эти соседи равноправны, и никак нельзя сказать, какой из них «принадлежит» данному атому натрия.
Растворим поваренную соль в воде. Окажется, что раствор — превосходный проводник тока. Строгими опытами можно доказать, что электрический ток пре5дставляет собой поток отрицательно заряженных атомов хлора, движущихся в одну сторону, и поток положительно заряженных атомов натрия, движущихся в противоположную. Так что при растворении атомы натрия и хлора также не образуют крепко связанную пару атомов.
После того как модель атома установлена, становиться ясным, что анион хлора представляет собой атом хлора с «лишним» электроном — напротив, катиону натрия не достаёт одного электрона.
Отсюда можно сделать вывод, что и твердое тело состоит из ионов, а не из атомов. Это доказывается многими опытами, на описании которых мы не будем останавливаться.
Ну, а пары хлористого натрия? И в парах мы не находим молекул. Пар хлористого натрия состоит из ионов или из различных очень неустойчивых групп ионов. О молекулах ионных соединений можно говорить лишь в химическом смысле этого слова.
Ионные соединения обязательно растворяются в воде. Такие растворы, классическими представителями которых являются простые соли металлов вроде хлористого натрия, Обладают хорошей проводимостью и поэтому называются сильными электролитами.
Класс молекулярных кристаллов весьма обширен. В кристалле углекислого газа (CO2), атом углерода имеет очень близких углеродных соседей. И во всех остальных случаях, изучая структуру молекулярного кристалла, мы сразу же видим, сто имеется возможность разбить кристалл на тесно расположенные группы атомов.
Раз они тесно расположены, значит и связанны большими силами. Так оно и есть. Грубо говоря, силы, связывающие эти атомы, принадлежащие одной молекуле, в сто раз больше сил, действующих между атомами соседних молекул.
В чем же состоит внутримолекулярная связь? Достаточно ясно, что представлениями о притяжении электрически заряженных отрицательных и положительных ионов обойтись не удастся. Ведь существуют молекулы кислорода, азота, водорода, построенные из одинаковых атомов. Невозможно предположить, что один теряет, а другой приобретает электрон. С какой стати электрон должен предпочесть пребывание около одного из двух одинаковых атомов.
Объяснение сущности внутримолекулярной связи пришло лишь вместе с квантовой механикой. Итак, энергия любой системы квантуется, на одном уровне энергии могут находиться два электрона с противоположно направленными «спинами. Из основных гипотез квантовой механики вытекает одно интересное следствие. Оказывается (это же не гипотеза, а строгий математический вывод, который мы не приводим из-за его сложности), что самое низкое значение энергии, которое может принять электрон, определяется размерами области, внутри которой он движется. Чем больше эти размеры, тем энергия этого «нулевого уровня» ниже.
Теперь представим себе, что два атома водорода приближаются друг к другу. Если они объединяются в одну систему, то «квартира» для каждого электрона станет примерно в два раза больше. В одной и той же квартире могут мирно ужиться два электрона с противоположно направленными спинами. Следовательно, такое сожительство выгодно. Область существования для обоих электронов возросла. Значит суммарная энергия системы после объединения двух атомов в одно целое понизилась. Ну, а то, что любая система — если есть на то возможность — стремится перейти в состояние с наинизшей энергией, нам превосходно известно. По этой самой причине предоставленный сам себе шар скатывается с горки.