Компенсационный метод измерения
Схема для измерения сопротивлений
Измеряемое сопротивление Rx включается чаще всего последовательно с образцовым сопротивлением R0. Падения напряжений, создаваемые на этих сопротивлениях, Uх и UQ, измеряются компенсатором (рис. VI-28). Смотрите описание купить кровать чердак на сайте.
Рис. VI-28
Для последовательной схемы, где сопротивления обтекаются одним и тем же током, будет справедливо соотношение
Схема для измерения мощности и поверки ваттметров
На рис. VI-29 изображена схема, которая применяется при измерении мощности и, в частности, при градуировке и поверке ваттметров.
С помощью переключателя П компенсатор присоединяется попеременно то в цепь напряжения ваттметра, то в цепь его тока.
Вначале, при положении 1 переключателя П, с помощью компенсатора устанавливается номинальное 'напряжение ваттметра, которое в дальнейшем поддерживается постоянным и периодически проверяется опять-таки на компенсаторе. Затем переключатель Я ставят в положение 2 и, регулируя реостатом /?рег ток в последовательной цепи ваттметра, устанавливают стрелку прибора на оцифрованных отметках шкалы, измеряя силу тока.
Для каждой отметки определяется значение мощности как произведение тока ,на напряжение, и результат расчета сверяется с показанием прибора. Разность между показанием прибора и результатом измерения мощности на компенсаторе даст основную погрешность ваттметра для каждого поверенного деления шкалы.
КОМПЕНСАТОРЫ ПЕРЕМЕННОГО ТОКА
Компенсаторы переменного тока — это приборы, измеряющие на переменном токе напряжения и некоторые другие электрические величины, связанные с напряжением функциональной зависимостью (ток, сопротивление, мощность и др.). Как известно, напряжение на переменном токе можно представить как комплексную величину и изобразить в виде вектора, занимающего определенное положение на комплексной плоскости (рис. VI-30),
Компенсационный метод измерения на переменном токе, так же как и на постоянном, заключается в уравновешивании неизвестного напряжения известным. Для того, чтобы скомпенсировать на переменном токе напряжение. Ux, необходимо и достаточно приложить к нему другое напряжение Uк, равное по амплитуде, форме кривой и частоте, но сдвинутое по фазе относительно Ur на 180°.
компенсаторы переменного тока значительно менее точны, чем компенсаторы постоянного тока. Причиной тому служит отсутствие образцовой переменной синусоидальной э. д. с., с помощью которой можно было бы установить рабочий ток в компенсаторе, как это делается на постоянном токе. В компенсаторах переменного тока величина рабочего тока устанавливается по амперметру обычно электродинамической системы, класс точности которого в наилучшем случае 0,1—0,2.
Таким образом, высокая точность измерения, свойственная компенсаторам постоянного тока, на переменном токе теряется. Несмотря на это, компенсатор переменного тока — один из важнейших приборов, позволяющий судить не только о величине измеряемого напряжения, но и о его фазе.
Кроме того, в момент измерения компенсатор не потребляет мощности от источника измеряемой величины и, следовательно, не оказывает влияния на работу схемы, что тоже является его ценным качеством.
В уравнении (VI-46) представлены две формы записи комплексного напряжения UX,.: алгебраическая— с двумя составляющими UXA и UXP и показательная—с модулем Ux и фазой φx- измеряемой величины. Если напряжение Ux представить в алгебраической форме, то для компенсации его необходимо скомпенсировать порознь активную и реактивную составляющие.
Если же напряжение Uх характеризовать модулем и фазой, то для компенсации его нужно скомпенсировать модуль и фазу величины. В соответствии с этим различают две группы компенсаторов:
а) полярно-координатные с отсчетом измеряемого напряжения 1в полярных координатах;
б) прямоугольно-координатные с отсчетом действительной и мнимой составляющих напряжения по действительной и мнимой осям.
Рассмотрим схему и принцип действия прямоугольно-координатного компенсатора, изображенного на рис. VI-31.
Рис. VI-31
Компенсатор состоит из двух контуров: / и //. Напряжение источника питания схемы U, связанное с первым контуром через трансформатор, вызывает в этом контуре ток I1, величину которого можно регулировать реостатом Rрег и измерять амперметром.
Проходя по реохорду А—В, представляющему собой чисто активное сопротивление, ток 1\ создает на нем падение напряжения UKA совпадающее по фазе с током.
Контур 1 связан с контуром 2 через воздушный трансформатор М (катушку взаимной индуктивности без стального сердечника).
При протекании тока I1 через первичную обмотку катушки М в ней возникает магнитный поток ф, находящийся в фазе с током I1 который вызовет появление во .вторичной обмотке э д. с Е2 отстающей от потока ф на 90°.
Если пренебречь индуктивным сопротивлением вторичной обмотки воздушного трансформатора, то можно считать, что ток второго контура I2 совладает по фазе с э. д. с. Е2, а напряжение Uкр на реохорде А—В, представляющем собой чисто активное сопротивление, совпадает по фазе с током I2.
Таким образом, в схеме создаются условия, при которых токи I1 и I2, а также напряжения, снимаемые с реохордов А—В и А'—В', сдвинуты на угол 90° одно по отношению к другому.
Векторная диаграмма компенсатора приведена на рис. VI-32. Как видно из рис. VI-31, середины реохордов А—В и А'—В' электрически соединены, образуя нулевую точку схемы.
Измеряемое напряжение UX=UXA+jUxp подводится к зажимам /—2 и далее, через вибрационный гальванометр, к движкам Д и Д2.
Перейти на страницу: 1 2 3 4 5