Кристаллы и их свойства
Если при построении кристаллов из атомов или молекул действует принцип плотной упаковки, то, казалось бы, в природе должны встречаться кристаллы только в виде шестигранных призм и кубов. Кристаллы такой формы действительно очень распространены. Гексагональный плотной упаковке атомов соответствует, например, форма кристаллов цинка, магния, кадмия. Кубической плотной упаковке соответствует форма кристаллов меди, алюминия, серебра, золота и ряда других металлов.
Но этими двумя формами многообразие мира кристаллов вовсе не ограничивается.
Существование форм кристаллов, не соответствующих принципу плотнейшей упаковки равновеликих шаров, может иметь разные причины.
Во-первых, кристалл может быть построен с соблюдением принципа плотной упаковки, но из атомов разных размеров или из молекул, имеющих форму, сильно отличающуюся от шарообразной (рис.2). Атомы кислорода и водорода имеют шарообразную форму. При соединении одного атома кислорода и двух атомов водорода происходит взаимное проникновение их электронных оболочек. Поэтому молекула воды имеет форму, значительно отличающуюся от шарообразной. При затвердевании воды плотная упаковка ее молекул не может осуществляться тем же способом, что и упаковка равновеликих шаров.
Во - вторых, отличие упаковки атомов или молекул от плотнейшей может быть объяснено существованием более сильных связей между ними по определенным направлениям. В случае атомных кристаллов направленность связей определяется структурой внешних электронных оболочек атомов, в молекулярных кристаллах — строением молекул.
Разобраться в устройстве кристаллов, пользуясь только объемными моделями их строения, довольно трудно. В связи с этим часто применяется способ изображения строения кристаллов с помощью пространственной кристаллической решетки.Она представляет собой пространственную сетку, узлы которой совпадают с положением центров атомов (молекул) в кристалле. Такие модели просматриваются насквозь, но по ним нельзя ничего узнать о форме и размерах частиц, слагающих кристаллы.
В основе кристаллической решетки лежит элементарная ячейка — фигура наименьшего размера, последовательным переносом которой можно построить весь кристалл. Для однозначной характеристики ячейки нужно задать размеры ее ребер а, в и с и величину углов a, b и g между ними. Длину одного из ребер называют постоянной кристаллической решетки, а всю совокупность шести величин, задающих ячейку, — параметрами ячейки.
На рисунке 3 показано, как можно застроить все пространство путем сложения элементарных ячеек.
Важно обратить внимание на то, что большинство атомов, а для многих типов кристаллической решетки и каждый атом принадлежит не одной элементарной ячейке, а входит одновременно в состав нескольких соседних элементарных ячеек. Рассмотрим, к примеру, элементарную ячейку кристалла каменной соли.
За элементарную ячейку кристалла каменной соли, из которой, переносом в пространстве можно построить весь кристалл, должна быть принята часть кристалла, представленная на рисунке.При этом нужно учесть, что от ионов, находящихся в вершинах ячейки, ей принадлежит лишь одна восьмая каждого из них; от ионов, лежащих на ребрах ячейки, ей принадлежит по одной четвертой каждого; от ионов, лежащих на гранях, на долю каждой из двух соседних элементарных ячеек приходится по половине иона.
Подсчитаем число ионов натрия и число ионов хлора, входящих в состав одной элементарной ячейки каменной соли. Ячейке целиком принадлежит один ион хлора, расположенный в центре ячейки, и по одной четверти каждого из 12 ионов, расположенных на ребрах ячейки. Всего ионов хлора в одной ячейке 1+12*1/4=4. Ионов натрия в элементарной ячейке—шесть половинок на гранях и восемь восьмушек в вершинах, всего 6*1/2+8*1/8=4.
Сравнение элементарных ячеек кристаллических решеток различного типа может проводиться по разным параметрам, среди которыхчасто употребляются атомный радиус, плотность упаковки и количество атомов в элементарной ячейке. Атомный радиус определяют как половину расстояния между центрами ближайших соседних атомов в кристалле.
Доля объема, занятая атомами в элементарной ячейке, называется плотностью упаковки.
Классификация кристаллов и объяснение их физических свойств оказываются возможными только на основе изучения их симметрии. Учение о симметрии является основой всей кристаллографии.
Для количественной оценки степени симметричности служат элементы симметрии — оси, плоскости и центр симметрии. Осью симметрии называют воображаемую прямую, при повороте вокруг которой на 360° кристалл (или его решетка) несколько раз совмещается сам с собой. Число этих совмещений называют порядком оси.
Плоскостью симметрии называют плоскость, рассекающую кристалл на две части, каждая из которых является зеркальным отображением одна другой.
Плоскость симметрии как бы выполняет роль двустороннего зеркала (рис.4). Число плоскостей симметрии может быть различным. Например, в кубе их девять, а в снежинках любой формы — шесть.
Центром симметрии называют точку внутри кристалла, в которой пересекаются все оси симметрии.
Каждый кристалл характеризуется определенным сочетанием элементов симметрии. Ввиду того, что число элементов симметрии невелико, задача отыскания всех возможных форм кристаллов не является безнадежной. Выдающийся русский кристаллограф Евграф Степанович Федоров установил, что в природе может существовать только 230 различных кристаллических решеток, обладающих осями симметрии второго, третьего, четвертого и шестого порядка. Иначе говоря, кристаллы могут иметь форму различных призм и пирамид, в основании которых могут лежать только правильный треугольник, квадрат, параллелограмм и шестиугольник.
Е. С. Федоров является основоположником кристаллохимии — науки, занимающейся определением химического состава кристаллов путем исследования формы граней и измерения углов между ними. Кристаллохимический анализ по сравнению с химическим обычно занимает меньше времени и не приводит к разрушению образца.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13