Магнетронные распылительные системы
Подложки располагаются вокруг катода (при внешнем распылении) или внутри вдоль его оси (при внутреннем распылении), причем в последнем случае достигается более высокий коэффициент использования материала мишени. Для приведенных систем характерны плотности тока 600 А/см2 и достаточно высокая равномерность наносимых покрытий [1, 3].
На рисунке 3.1 д показана магнетронная система, состоящая из полусферического вогнутого катода, дискового подложкодержателя под ним, кольцевого анода, а также двух электромагнитных катушек, создающих квадрупольное магнитное поле в области разряда. При зажигании разряда перед катодом образуется кольцеобразная область, в которой магнитное и электрическое поля пересекаются под прямым углом. В этой области наиболее высокая степень ионизации атомов рабочего газа, вследствие чего катод на кольцевом участке между экватором и полюсом интенсивно распыляется. Таким образом, описанная МРС имитирует кольцевой источник распыляемого материала. При использовании медного катода параметры разряда критичны к колебаниям давления, величине и геометрии магнитного поля и меняются и меняются при увеличении температуры катода во время распыления [3]. Поэтому, не смотря на хорошую адгезию медных пленок к стеклянным подложкам, большую скорость осаждения (до 17 нм/с) и довольно высокую равномерность распределения пленки по толщине (96 – 97 %), применение этой МРС ограничено из-за невысокой стабильности и воспроизводимости параметров разряда, а также сложности выполнения полусферического катода.
На рисунке 3.1, е приведена конструкция с цилиндрическим полым катодом [3]. Магнетронная система распыления выполнена в виде автономного источника распыляемого материала, который может быть пристыкован к любой вакуумной камере, причем в вакууме находятся только катодный и анодный блоки, а вся остальная часть источника, в том числе и магнитная система, располагается вне камеры. Исследования показали, что данная конструкция системы имеет ряд недостатков: значительная часть распыляемого материала перераспределяется внутри источника и не попадает на подложки; высокая неравномерность распределения конденстанта по толщине не позволяет осаждать пленки на большие площади без использования планетарных механизмов вращения подложек; недостаточна эффективна магнитная система, которая не обеспечивает в полной мере защиту подложек от бомбардировки заряженными частицами.
Магнетронная система с коническим катодом обеспечивает более полное использование распыляемого материала (смотри рисунок 3.1, ж ). Кроме того, магнитная система дает возможность сконцентрировать магнитное поле у распыляемой поверхности мишени, что позволяет вдвое увеличить плотность тока на катоде и достигнуть более высоких скоростей осаждения. Однако размещение магнитной системы внутри вакуумной камеры вносит дополнительные загрязнения в рабочий объем установки. Хотя в системе с коническим катодом достигается более равномерное нанесение пленок, для увеличения площади одновременно обрабатываемых подложек с высокой равномерностью распределения конденсата по толщине также необходимо использовать планетарные внутрикамерные устройства.
Дальнейшее развитие магнетронных распылителей привело к созданию планетарных систем (сотри рисунок 3.1, з), в которых эффект экранирования потока распыленных атомов полностью устранен. Магнитная система монтируется в водоохлаждаемом держателе и не вносит загрязнений в рабочую камеру. Планетарные магнетронные системы позволяют создать еще более высокие плотности тока и достичь скоростей осаждения, сравнимых со скоростями, характерных для метода термического испарения в высоком вакууме. В то же время недостатком такой системы является то, что распылению подвергается узкая кольцеобразная область мишени и коэффициент использования составляет 26% объема мишени.
В настоящее время известно множество конструктивных вариантов магнетронных распылительных систем [1, 2, 3], но наибольшее распространение в промышленности получили системы с мишенями конической и плоской форм. Конструкции магнетронных систем должны обеспечивать высокую скорость распыления, минимальное отрицательное воздействие на обрабатываемые структуры, высокий коэффициент использования материала мишени, возможность распыления разнообразных материалов, нанесение пленочных покрытий на большие площади с минимальной неравномерностью по толщине, высокую надежность работы, большой срок службы и другие. Большинство из этих требований удовлетворяется правильным выбором конструкции магнетронной и формы мишени.
Магнитная система, являющаяся одним из конструктивных элементов магнетронной системы, должна формировать у поверхности мишени поле заданной конфигурации и величины с минимальным рассеянием для создания эффективной магнитной ловушки для электронов. Исследования по макетированию магнитных полей позволили выявить наиболее целесообразные варианты конструкции магнитной системы с точки зрения простоты и возможности получения магнитного поля требуемой геометрии и величины.
Магнитная система, изображенная на рисунке 3.2, а, является достаточно простой и обеспечивает эффективную локализацию плазмы. В этой конструкции можно использовать наборные магнитные блоки, перекрывая их сверху общим полюсным наконечником. Более эффективно сконцентрировать поле в рабочем зазоре с минимальными потерями позволяет магнитная система, приведенная на рисунке 3.2, б. Однако она представляет собой магнит специфической формы и требует специального изготовления. Аналогичный эффект достигается при использовании магнитов подковообразной формы (рисунок 3.2, в). Магнитную систему можно сделать более компактной, если использовать кольцевые магниты с радиальным намагничиванием (рисунок 3.2, г), но изготовление таких магнитов достаточно сложно. Кроме того, приведенная конструкция характеризуется значительным рассеянием магнитного поля снизу катодного блока. Форму магнитного поля можно изменять, используя полюсные наконечники определенной геометрии. Для создания в прикатодной области сильного магнитного поля, силовые линии которого почти параллельны распыляемой поверхности (что необходимо для более равномерного распыления поверхности мишени), можно использовать магнитную систему, показанную на рисунке 3.2, д. Однако в такой конструкции при сильно развитых наконечниках индукция магнитного поля резко уменьшается с увеличением расстояния от мишени, поэтому эффективное
Перейти на страницу: 1 2 3 4 5 6 7