Межпредметные связи физики и математики
Физические закономерности записываются в школе главным образом аналитически, с помощью формул. Поэтому всегда имеется гласность, что учащиеся будут воспринимать функциональную зависимость формально. Графический способ обладает по сравнению с аналитическим значительными преимуществами: график показывает ход физической закономерности, наглядно раскрывает динамику процесса. Опыт показывает, что установление связи между физическими величинами на опыте (например, выяснение зависимости между I, U и R и установление закона Ома для участка цепи) и изображение ее в виде геометрического образа дает возможность постепенно создавать, расширять и укреплять такие важные представления, как прямая и обратная пропорциональная зависимость величин, линейная, квадратичная, показательная и логарифмическая функции, среднее значение, максимум и минимум функции.
Покажем, как могут быть реализованы межпредметные связи физики и математики при формировании таких понятий как функция, величина, производная, интеграл. Причины, побудившие меня обратиться к этому вопросу, следующие:
Во-первых, изучение названных понятий в старших классах затрудняет преподавание, например, механики в курсе физики. Так, по нашему мнению, изучение основных понятий математического анализа в математике целесообразнее начать одновременно с прохождением механики в физике.
Во-вторых, изучению всего курса физики препятствует недостаточное использование математического аппарата, которое происходит либо из-за позднего формирования у учащихся, либо из-за отсутствия согласованности действий преподавателей физики и математики в использовании общих физико-математических понятий.
Выход из создавшейся ситуации мы видим в совместном формировании у учащихся понятий математического анализа в курсах физики и математики как высшей формы реализации межпредметных связей. Именно при параллельном изучении основ механики и математического анализа открываются наибольшие возможности для формирования физических понятий - мгновенная скорость, мгновенное ускорение, перемещение, работа, так и математических - производная, первообразная, интеграл.
Учебные план и программы современной школы позволяют осуществлять межпредметные связи в процессе изучения основ каждой науки. Но подлинные межпредметные связи, использование которых способствует формированию синтезирующего мышления школьников, позволяет учащимся всесторонне изучать явления природы и общества, осуществляются только в том случае, когда учитель в процессе обучения «своего» предмета и средствами этого предмета раскрывает явления, изучаемые в других учебных дисциплинах, расширяет, углубляет знания учеников, осуществляет перенос знаний в разнообразные ситуации, формирует у учеников обобщенные понятия, умения, навыки.
На наш взгляд, в IX классе достаточно разобрать понятие производной многочлена. А дальнейшее развитие понятий производной и интеграла с привлечением различных функций целесообразно продолжить в Х и XI классах на уроках физики и математики.
«При реализации межпредметных связей предпочтение следует отдать скорее наглядности физики, чем строгости математических доказательств. Поэтому на уроках математики, например, производную сумму вводить при помощи закона сложения скоростей; при выводе формулы производной функции, основанном на использовании метода неполной индукции, математические выкладки подтверждаются примерами из физики; понятия предельного перехода формируется на основе физического эксперимента, во время которого определяются значения средних скоростей движения тела за уменьшающиеся промежутки времени. Рассмотрение физического примера — движение тела, брошенного вертикально вверх, - облегчает задачу формирования понятий возрастающей и убывающей функций, позволяет мотивированно ввести понятие второй производной и на этой основе получить правила определения выпуклости графика. Что касается понятий «первообразная» (неопределенный интеграл) и «интеграл» (определенный интервал), то их формирование целесообразно проводить с широким использованием физических примеров, начиная с их определения, получения основного свойства первообразных, геометрического образа первообразной и интеграла и заканчивая правилами интегрирования многочлена». [13,51].
Физика в формировании понятий математического анализа играет не пассивную роль средства наглядности, а дает возможность представить предельный переход в динамике и осмыслить понятие «бесконечно малой величины».
Для курса физики знание производной и интеграла открывает перспективу в плане возможности более строгого определения ряда физических величин;
точной записи второго закона Ньютона, закон электромагнитной индукции, ЭДС индукции, возникающей в рамке, вращающейся в магнитном поле; упрощение работ с графиками и, наконец, рассмотрение видов равновесия тел не только с позиции действия силы, но и с энергетической точки зрения. Знание учащимся производной и интеграла позволяет выработать у них общий подход к определению физических величин и решению графических задач физического содержания.
С этой целью можно, например, использовать алгоритмические схемы, являющиеся общими для определения математических и физических функциональных зависимостей. Так, схема общего подхода к определению физических понятий с помощью производной может быть следующей:
1. Убедившись в возможности применения понятия производной, запишите функциональную зависимость в виде у=f(х).
2. Найдите отношение приращения функции к приращению аргумента, то есть среднюю скорость изменения функции: .
3. Осуществите предельный переход над функцией при условии , записав выражение производной:
.
4. Сформулируйте определение физической величины по схеме: название физического понятия, определенного как производная от данной функции; название функции; название аргумента. Например, мгновенная скорость движения тела есть производная от координаты тела по времени.
Перейти на страницу: 1 2 3 4 5 6 7 8 9