Молния - газовый разряд в природных условиях
Рассмотрим механизм искрового разряда.
В настоящее время общепринятой считается так называемая стримерная теория искрового разряда, подтвержденная прямыми опытами. Качественно она объясняет основные особенности искрового разряда, хотя в количественном отношении и не может считаться завершенной. Если вблизи катода зародилась электронная лавина, то на ее пути проходит ионизация и возбуждение молекул и атомов газа. Существенно, что световые кванты, испускаемые возбужденными атомами и молекулами, распространяясь к аноду со скорость света, сами производят ионизацию газа, и дают начало первым электронным лавинам. Таким путем во всем объеме газа появляются слабо святящиеся скопления ионизированного газа, называемые стримерами. В процессе своего развития отдельные электронные лавины догоняют друг друга и, сливаясь вместе, образуют хорошо проводящий мостик из стримеров. По этому в последующий момент времени и устремляется мощный поток электронов, образующий канал искрового разряда. Поскольку проводящий мостик образуется в результате слияния практически одновременно возникающих стримеров, время его образования много меньше времени, которое требуется отдельной электронной лавине для прохождения расстояний от катода к аноду. Наряду с отрицательными стримерами, т.е. стримерами, распространяющимися от катода к аноду, существуют также положительные стримеры, которые распространяются в противоположном направлении. https://sportcity74.ru предтренировочные комплексы купить. Головка воздушная вентиляционная nordmile.ru.
5. Исторические воззрения на молнии.
Молния и гром первоначально воспринимались людьми как выражение воли богов и, в частности, как проявление божьего гнева. Вместе с тем пытливый человеческий ум с давних времен пытался постичь природу молний и грома, понять их естественные причины. В древние века над этим размышлял Аристотель. Над природой молний задумывался Лукреций. Весьма наивно представляются его попытки объяснить гром как следствие того, что «тучи сшибаются там под натиском ветров».
Многие столетия, включая и средние века, считалось, что молния – это огненный пар, зажатый в водяных парах туч. Расширяясь, он прорывает их в наиболее слабом месте и быстро устремляется в низ, к поверхности земли.
В 1752 г Бенджамин Франклин экспериментально доказал, что молния – это сильный электрический разряд. Ученый выполнил знаменитый опыт с воздушным змеем, который был запущен в воздух при приближении грозы.
Опыт: На крестовине змея была укреплена заостренная проволочка, к концу веревки привязаны ключ и шелковая лента, которую он удерживал рукой. Как только грозовая туча оказалась над змеем, заостренная проволока стала извлекать из нее электрический заряд, и змей вместе с бечевой наэлектризуется. После того, как дождь смочит змея вместе с бечевкой, сделав их тем самым свободными проводить электрический заряд, можно наблюдать как электрический заряд будет «стекать» при приближении пальца.
Одновременно с Франклиным исследованием электрической природы молнии занимались М.В. Ломоносов и Г.В.Рихман.
Благодаря их исследованиям в середине 18 века была доказана электрическая природа молнии. С этого времени стало ясно, что молния представляет собой мощный электрический разряд, возникающий при достаточно сильной электризации туч.
6. Молнии.
6.1 Виды молний
a) Большинство молний возникает между тучей и земной поверхностью, однако, есть молнии, возникающие между тучами. Все эти молнии принято называть линейными. Длина отдельной линейной молнии может измеряться километрами. (Линейную молнию можно получить искусственно – скользящий разряд.)
b) Еще одним видом молний является ленточная молния. При этом следующая картина, как если бы возникли несколько почти одинаковых линейных молний, сдвинутых относительно друг друга.
c) Было замечено, что в некоторых случаях вспышка молний распадается на отдельные святящиеся участки длиной в несколько десятков метров. Это явление получило название четочной молнии. Согласно Малану (1961) такой вид молний объясняется на основе затяжного разряда, после свечения которого казалось бы более ярким в том месте, где канал изгибается в направлении наблюдателя, наблюдающего его концом к себе. А Юман (1962) считал, что это явление стоит рассматривать как пример «пинг-эффекта», который заключается в периодическом изменении радиуса разрядного столба с периодом в несколько микросекунд.
6.2 Физика линейной молнии
Линейная молния представля6т собой несколько импульсов, быстро следующих друг за другом. Каждый импульс – это пробой воздушного промежутка между тучей и землей, происходящий в виде искрового разряда. В начале рассмотрим первый импульс. В его развитии есть две стадии: сначала образуется канал разряда между тучей и землей, а затем по образовавшемуся каналу быстро проходит импульс основного тока.
Первая стадия (образование канала разряда) показана на рис 3. Все начинается с того, что в нижней части тучи формируется электрическое поле очень большой напряженности – 105…106 В/м.
Свободные электроны получают в таком поле огромные ускорения. Эти ускорения направлены вниз, поскольку нижняя часть тучи заряжена отрицательно, а поверхность земли положительно. На пути от первого столкновения до другого, электроны приобретают значительную кинетическую энергию. Поэтому, сталкиваясь с атомами или молекулами, они ионизируют их. В результате рождаются новые (вторичные) электроны, которые, в свою очередь, ускоряются в поле тучи и затем в столкновениях ионизуют новые атомы и молекулы. Возникают целы лавины быстрых электронов, образующие у самого «дна» тучи, плазменные «нити» – стример.
Сливаясь друг с другом, стримеры дают начало плазменному каналу, по которому в последствии пройдет импульс основного тока
(рис 3). Этот развивающийся от «дна» тучи к поверхности земли плазменный канал наполнен свободными электронами и ионами, и поэтому может хорошо проводить электрический ток. Его называют лидером или точнее ступенчатым лидером. Дело в том, что канал формируется не плавно, а скачками – «ступенями».
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10