Основы процессов получения фильтров и мембранных материалов
Металлические мембраны могут быть приготовлены выщелачиванием или возгонкой одного из компонентов сплава. При этом получаются высокопористые мембраны с очень узким распределением по размеру пор. Другим вариантом получения металлических мембран может быть спекание при высокой температуре металлического порошка.
Основным преимуществом металлических мембран является однородность структуры и, как следствие, размеров пор. Эти мембраны не разрушаются бактериями, химически стойки в различных средах и могут подвергаться термической обработке. Они легко очищаются обратным током воды или какой-либо другой жидкости либо прокаливанием.
Мембраны из микропористого стекла. Стеклянные мембраны обладают такими ценными свойствами, как высокая термическая и химическая стойкость, неподверженность действию микроорганизмов и жесткость структуры. Эти свойства позволяют использовать их при разделении растворов в широком интервале рН и осуществлять стерилизацию. Мембраны из микропористого стекла могут быть изготовлены в виде пластин, плёнок, трубок или капилляров.
Технология получения стеклянных капиллярно-пористых мембран складывается из нескольких последовательных операций: формирования капилляров из щелочеборсиликатного стекла, кислотной обработкой, в процессе которой удаляется одна из составляющих стеклофаз, а оставшийся пористый каркас состоит в основном из SiO2 . Путём вариации режимов термической и химической обработки можно получать мембраны различной пористой структуры с порами размером от 2,0 до 100,0 нм.
Изучение влияния давления на рабочие характеристики мембран показало, что проницаемость капиллярно-пористых мембран линейно возрастает с увеличением рабочего давления.
Жёсткость структуры стеклянных мембран и обратимость рабочих характеристик подвержена опытами по проницаемости воды при последовательном увеличении и снижении рабочего давления. Исследования показали, что при длительной эксплуатации мембран из пористого стекла их рабочие характеристики не изменяются.
Селективность стеклянных мембран может быть повышена изменением рН раствора или добавлением а раствор солей тяжёлых металлов. Проницаемость капиллярно-пористых стеклянных мембран можно значительно увеличить путём повышения относительной пористости стенок капилляров и особенно-снижением их толщины, что подтверждается опытными данными.
Нанесённые мембраны. Исходя из капиллярно-фильтрационной модели механизма полупроницаемости, можно ожидать появления селективных свойств у лиофильного пористого материала со сквозными капиллярами при уменьшении его пор до размеров, не превышающих удвоенной толщины слоя связанной жидкости.
Мембраны нанесённого типа в зависимости от способа их получения можно подразделить на пропитанные, запыленные и осаждённые.
В качестве пористой основы при получении пропитанных мембран могут использоваться различные материалы: пористая нержавеющая сталь, металлокерамические перегородки и другие, а в качестве веществ, уменьшающих размеры пор, - нерастворимые соли, которые получаются в результате химического взаимодействия между специально подобранными растворимыми солями. Методика приготовления мембран заключается в следующем: пористую основу пропитывают в насыщенном водном растворе какой-либо растворимой соли в течение суток и высушивают. Затем мембрану помещают в раствор другой соли, образующей при химической реакции нерастворимый осадок. Выдержка мембраны также производится в течение суток.
Оказалось, что эти мембраны обладают значительной проницаемостью при низких давлениях, но очень малой селективностью. Однако даже при такой селективности по раствору NaCl эти мембраны могут быть с успехом использованы для проведения процесса ультрафильтрации.
При повышении давления селективность пропитанных мембран понижается, что свидетельствует о неравномерности пропитки и наличии в мембранах крупных пор, через которые раствор NaCl проходит не разделяясь. Можно ожидать, что селективность подобных мембран может быть повышена при получении мембраноподобного слоя путём многократной пропитки основы.
Таким образом, технология изготовления пропитанных мембран открывает широкие возможности получения разнообразных полупроницаемых мембран для проведения обратного осмоса и ультрафильтрации.
Напылённые мембраны могут быть получены путём напыления на микропористую подложку различных веществ, обладающих свойством к сцеплению подложки. При этом размер пор можно направленно регулировать изменением толщины напылённого на подложку слоя.
Осаждённые мембраны получают продавливанием через микропористую подложку какой-либо суспензии, содержащей небольшое количество тонкодиспергированного вещества, которое тонким слоем осаждается на подложке. При дальнейшей обработке на поверхности подложки образуется полупроницаемый слой, который сохраняет свои селективные свойства длительное время.
В качестве обложек могут быть использованы бумага, пористые полимерные плёнки с порами размером 0,45 мкм и др. При выборе подложки следует учитывать способность к сцеплению подложки и плёнки из окиси графита. При отсутствии такой способности происходит проникновение ОГ-частиц в поры подложки, что ведёт к ухудшению характеристик полученной мембраны.
Интересно отметить, что селективность мембран из ОГ по H3BO3 значительно выше, чем селективность ацетатцеллюлозных мембран.
К достоинству мембран из ОГ относится прежде всего их высокая химическая стойкость и возможность устойчивой работы в условиях переменных температур. Однако механическая прочность испытанных мембран пока ещё невелика.
2.2 Технология изготовления эластичных мембран.
Технология прорезинивания тканей.
Наиболее распространённым материалом для эластичных мембран в настоящее время являются прорезиненные ткани. Для производства таких тканей применяются разнообразные текстильные материалы из различных видов волокон, представляющих собой высокомолекулярные органические вещества: натуральные, искусственные и синтетические волокна. Назначение текстильных материалов состоит в повышении прочности изделий и в уменьшении их деформируемости при растяжении.
Перейти на страницу: 1 2 3 4 5 6 7 8