Простой эффект Джозефсона
Сверхпроводимость - макроскопическое квантовое явление
При понижении температуры многие металлы и сплавы переходят в сверхпроводящее состояние. Этот переход происходит при вполне определенной для каждого материала температуре Tc , называемой критической. Сверхпроводимость характеризуется идеальной электропроводностью (сопротивление электрическому току равно нулю, если плотность тока меньше некоторой критической величины jc) и идеальным диамагнетизмом (индукция магнитного поля внутри сверхпроводника равна нулю, если ее значение снаружи меньше критического Вс). Таможенный адвокат представление интересов в таможне.
В микроскопической теории сверхпроводимости важным моментом является объяснение достаточно сильного притяжения между двумя электронами, возникающего при поляризации кристаллической решетки. Два электрона с противоположными спинами и направлениями движения объединяются в пару, называемую куперовской (по имени американского ученого Л. Купера, впервые показавшего, что такие два электрона образуют связанное состояние). Эти пары обладают нулевым суммарным спином и поэтому являются бозе-частицами (то есть частицами, подчиняющимися статистике Бозе-Эйнштейна). Такие частицы обладают замечательным свойством: если температура ниже Тс , они могут скапливаться на самом нижнем энергетическом уровне (в основном состоянии). Чем больше их там соберется, тем труднее какой-либо частице выйти из этого состояния. Для этого необходимо преодолеть энергетический барьер величиной 2 (по на каждый электрон в паре). Все частицы при этом описываются единой волновой функцией или, другими словами, когерентны. Характерное расстояние между двумя электронами в куперовской паре, называемое длиной когерентности , различно для разных сверхпроводников и может принимать значения 10-7-10-5љсм.
Таким образом, сверхпроводимость можно представить себе так. При Т < Тс электрический ток переносится куперовскими парами, то есть элементарными носителями тока с зарядом 2e (e - заряд электрона). При этом какой-либо частице совсем не просто рассеяться на примесном атоме или каком-либо другом дефекте кристаллической решетки металла, включая тепловые колебания ионов. Для этого ей нужно преодолеть сопротивление всех остальных подобных частиц.
Так как электрическое сопротивление равно нулю, то возбужденный в сверхпроводящем кольце ток будет существовать бесконечно долго. Электрический ток в этом случае напоминает ток, создаваемый электроном на орбите в атоме Бора: это как бы очень большая боровская орбита. Незатухающий ток и создаваемое им магнитное поле (рис. 1) не могут иметь произвольную величину, они квантуются так, что магнитный поток, пронизывающий кольцо, принимает значения, кратные элементарному кванту потока
Вб (h - постоянная Планка).
Рис. 1.Незатухающий ток и создаваемое им магнитное поле не могут иметь произвольную величину, они квантуются так, что магнитный поток, пронизывающий кольцо, принимает значения, кратные элементарному кванту потока Вб (h - постоянная Планка).
В отличие от электронов в атомах и других микрочастиц, поведение которых описывается квантовой теорией, сверхпроводимость - макроскопическое квантовое явление. Действительно, длина сверхпроводящей проволоки, по которой течет незатухающий ток, может достигать многих метров и даже километров. При этом носители тока в ней описываются единой волновой функцией. Это не единственное макроскопическое квантовое явление. Другим примером может служить сверхтекучесть в жидком гелии или в веществе нейтронных звезд.
В 1962 году появилась статья [Josephson B.D.,1962] никому до того неизвестного автора Б. Джозефсона, в которой теоретически предсказывалось существование двух удивительных эффектов: стационарного и нестационарного. Джозефсон теоретически изучал туннелирование куперовских пар из одного сверхпроводника в другой через какой-либо барьер. Прежде чем переходить к первому эффекту Джозефсона, остановимся кратко на туннелировании электронов между двумя частями металла, разделенными тонким слоем диэлектрика.
Туннельный эффект
Туннельный эффект - это типичная задача квантовой механики. Частица (например, электрон в металле) подлетает к барьеру (например, к слою диэлектрика), преодолеть который она по классическим представлениям никак не может, так как ее кинетическая энергия недостаточна, хотя в области за барьером она со своей кинетической энергией вполне могла бы существовать. Напротив, согласно квантовой механике, прохождение барьера возможно. Частица с некоторой вероятностью может как бы пройти по туннелю через классически запрещенную область, где ее потенциальная энергия как бы больше полной, то есть классическая кинетическая энергия как бы отрицательна. На самом деле с точки зрения квантовой механики для микрочастицы (электрона) справедливо соотношение неопределенностей (x - координата частицы, p - ее импульс). Когда малая неопределенность ее координаты в диэлектрике (dљ-љтолщина слоя диэлектрика) приводит к большой неопределенности ее импульса , а следовательно, и кинетической энергии p2/(2m) (m - масса частицы), то закон сохранения энергии не нарушается. Опыт показывает, что действительно между двумя металлическими обкладками, разделенными тонким слоем диэлектрика (туннельный переход), может протекать электрический ток тем больший, чем тоньше диэлектрический слой.