Радиолокация и ФАР - Курсовая работа
Как видите, поучительный рисунок из учебника физики содержит почти готовую идею радиолокации. Роль цели в ней играет металлический лист.
Пусть наблюдатель находится в точке 0, он хочет узнать, что находится в некоторой другой точке 1 и какими физическими и геометрическими характеристиками это обладает. Чем располагает наблюдатель? Он имеет возможность излучать радиоволны и концентрировать при помощи антенны основную долю излучаемой энергии в заданном направлении. (Принципиальный момент: несмотря на то, что основной поток энергии каким-то образом сконцентрирован в пространстве, энергия излучается по всем направлениям без исключения.)
Наблюдатель имеет возможностьĀ принимать отраженные радиоволны с требуемого направления. (Принципиальный момент: прием отраженных радиоволн осуществляется, тем не менее, со всех направлений без исключения.) Наблюдатель также может обладать определенными сведениями об объекте наблюдения (радиолокационная цель) и об окружающей среде.Сказанное позволяет отнести радиолокацию к классу задач дистанционного зондирования. Рассмотрим теперь, какие физические процессы происходят при осуществлении радиолокационного зондирования. Итак, наблюдатель излучает радиоволну, которая, спустя какое-то время, достигает точки 1, где наводит на исследуемом объекте токи обусловленные электрическим и магнитным полем, которые, свою очередь, порождают радиоволны, распространяющиеся по всем направлениям, в том числе и в направлении на точку 0. Отраженная радиоволна достигает точки 0, где в приемнике радиолокационной станции вызывает появление соответствующего сигнала (тока, напряжения). Ясно, что вся получаемая информация о наблюдаемой цели может быть получена только из сравнения излученного и принятого сигналов. Будучи извлеченной, эта информация будет выражаться на языке электрических сигналов, а не на языке каких-либо физических или геометрических характеристик цели. Перевод с одного языка на другой это другая самостоятельная задача.
В радиолокации используются радиоволны с длиной волны, приходящейся на сантиметровый (реже дециметровый) и миллиметровый диапазоны. Сам же вид излучаемого сигнала оказывается достаточно прост. Как правило, это последовательность коротких во времени импульсов, следующих один за другим через время, много превосходящее длительность этих импульсов. Ширина спектра таких сигналов Δf в подавляющем большинстве случаев оказывается во много раз меньше несущей частоты излучаемого сигнала f0, то есть у радиолокационных сигналов (за исключением особых случаев) отношение Δf /f0 << 1. Для функций U(t), обладающих таким свойством (узкополосные сигналы), как это впервые показал Гильберт, допустимо представление
U(t) = A(t)cos(2πf0 t + φ(t)), (1)
где A(t) и φ(t) - медленно за период высокой частоты Т = 2π/f0 меняющиеся во времени функции. Оказывается, такое на вид простое представление, каковым является выражение (1), несет в себе серьезную проблему, превращающую радиолокацию с точки зрения решения стоящих перед ней задач в класс особых наук, что крайне принципиально.
Отраженная радиоволна, естественно, будет также иметь вид, определяемый равенством (1). Если цель неподвижна, то частота отраженного сигнала не изменится, а изменения претерпят лишь его амплитуда и фаза.
Облучению подвергнутся также все остальные цели и, в частности, те из них, которые расположены на том же расстоянии от радиолокационной станции (назовем эти цели, например, 2 и 3), что и исследуемая цель 1.
Естественно, что радиоволны, отраженные от целей 1, 2 и 3, одновременно достигнут точки 0, где расположена радиолокационная станция. В этом случае сигнал в точке 0 найдется простым сложением трех сигналов типа того, что определено равенством (1). Это значит, что и суммарный сигнал будет также иметь тот же вид, что и представление (1), независимо от того, присутствует или отсутствует обнаруживаемая цель.
Это значит, что независимо от ситуации наличия или отсутствия цели в общем случае на входе радиолокационного приемника всегда присутствует сигнал одного и того же вида – квазигармоническое колебание.
Следующий важный вопрос состоит в том, чтобы выяснить, а что вообще несет в себе радиолокационная информация, то есть, иными словами, а что вообще можно получить из радиолокационных измерений. Для получения ответа на этот вопрос отвлечемся от воздействия помех и влияния среды распространения радиоволн. Чтобы такая картина представлялась реальной, можно просто считать, что интенсивность волны, отраженной от исследуемой цели, существенно превосходит соответствующие величины для помехового сигнала. Итак, приступим к поиску ответа на поставленный вопрос. Для этого, прежде всего, выберем некоторую ортогональную систему координат (X,Y), в которой в дальнейшем будем проводить анализ протекающих процессов. Сначала будем считать, что излучается радиоволна, у которой электрический вектор Erad имеет только X-компоненту (горизонтальная поляризация). Если не накладывать никаких дополнительных ограничений, то электрический вектор отраженной радиоволны Eref в общем случае будет иметь иную, чем вектор Erad , ориентацию в пространстве. Иными словами, в выбранной системе координат поле Eref будет иметь два компонента (Ex)ref и (Ey)ref. Ясно также, что между интенсивностями отраженной и излученной радиоволн (а стало быть, между длинами векторов Eref и Erad) имеет место прямая пропорциональность. Это приводит к тому, что (Ex)ref будет пропорционально (Ex)rad , прямая пропорциональность будет также между (Ey)ref и (Ex)rad.
Обозначим соответствующие коэффициенты пропорциональности соответственно SXX и SXY , то есть
(EX)ref = SXX (EX)rad ,
(EY)ref = SXY (EX)rad . (2)
Если вернуться к представлению радиолокационного сигнала в виде выражения (1), то у каждого из компонентов отраженной радиоволны в общем случае после отражения от цели появится некий фазовый сдвиг по отношению к излученной радиоволне.
Запишем временное представление для ортогональных компонентов электрического вектора отраженной радиоволны в следующем виде:
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10