Электрический ток в газах
Электрический ток в разрежённых газах. Катодные лучи.
Разрежённые газы обладают во много раз большей проводимостью, чем газы при нормальном давлении. Это объясняется тем, что при низком давлении длина свободного пробега частиц велика. Поэтому даже в слабых электрических полях электроны и ионы успевают накопить кинетическую энергию, достаточную для ионизации молекул при столкновении с ними.
Рассмотрим так называемый тлеющий разряд в воздухе. Возьмём длинную стеклянную трубку с впаянными в её концы электродами и соединим её полость через ответвление и резиновую трубку с насосом. Если электроды соединить с источником высокого напряжения, например с индукционной катушкой, при атмосферном давлении в трубке, то тока в трубке не будет. Если же начать выкачивать из неё воздух насосом, то вскоре между электродами протянутся светящиеся лиловатые нити, что указывает на возникновение электрического тока. По мере откачки воздуха свечение заполняет постепенно почти всю трубку. Различают следующие части разряда: прилегающие к катоду так называемое катодное тёмное пространство 1, за которым расположено бледно-синее тлеющее свечение 2; далее идёт тёмное пространство Фарадея 3 и бледно-красное свечение, называемое положительным столбом 4. Положительный столб при некоторых условиях становится слоистым: в нём чередуются светлые и тёмные полосы, называемые стратами. Цвет положительного свечения зависит от природы газа, например свечение неона красное, аргона – синее и т.д. Главными частями разряда являются катодное тёмное пространство и тлеющее свечение, в которых происходят основные процессы, поддерживающие разряд и без которых он не может существовать.
Положительные ионы, скорость которых сильно увеличивалась под действием электрического поля в катодном тёмном пространстве, ударяются о катод и выбивают из него электроны. Электроны, ускоренные электрическим полем, а также возникшие при ионизации молекул газа в катодном тёмном пространстве, поступают область тлеющего свечения, в которой находится очень большое число положительных ионов и электронов. Здесь большая часть ионов и электронов воссоединяется в нейтральные молекулы, причём энергия, затраченная ранее на ионизацию, выделяется в виде световой энергии. Положительный столб представляет собой так называемую плазму, в которой общий заряд всех электронов и всех ионов равен нулю.
Тлеющий разряд используется в газосветных трубках, применяемых в световых рекламах, а также в так называемых лампах дневного света. Лампы дневного света представляют собой газосветные трубки, стенки которых покрыты люминофором, т.е. особым составом, светящимся под действием газового разряда.
Катодные лучи. При очень больших разрежениях газа его давление так мало, что молекулы газа движутся от одной стенки сосуда до другой без соударений. Такое состояние газа называется вакуумом. Если в разрядной трубке создан вакуум, то и электроны могут двигаться в нём практически без столкновений с молекулами. Поэтому частицы газа перестают испускать свет, разряд становится темновым. Зато стекло трубки против катода светится зеленоватым светом. Что же происходит в трубке? Под действием сил электрического поля положительные ионы мчатся к катоду с очень большой скоростью, ударяются о него и выбивают из него электроны. Поток электронов, масса которых в тысячи раз меньше массы ионов, с огромной скоростью летит от катода. Скорость, которую приобретают электроны на своём пути от катода, так велика, что они движутся прямолинейно, перпендикулярно к поверхности катода независимо от того, где расположен анод. Часть электронов попадает на анод, а остальные ударяются о стекло трубки против катода и вызывают люминесценцию стекла. Если на пути электронов расположить экран, то на светящемся стекле будет видна тень экрана.
Этот поток электронов был назван катодными лучами, потому что он на первый взгляд похож на световые лучи. Однако ряд свойств катодных лучей доказывает их электронную природу. Катодные лучи отклоняются в электрическом поле. Например, узкий пучок катодных лучей, прошедших сквозь щель в диафрагме, проходя между пластинами плоского конденсатора, отклоняется в сторону положительно заряженной пластины. Катодные лучи отклоняются и в магнитном поле, тогда как на направление световых лучей ни электрическое, ни магнитное поле не действуют.
Большой интерес представляет собой четвёртое – плазменное – состояние вещества. Усиленное хаотическое тепловое движение электронов и ионов в плазме приводит к её нагреванию до очень высоких температур. Для того чтобы частицы шнура плазмы не касались стенок сосуда и не отдавали им свою энергию, плазму сжимают. Для этого используется внешнее магнитное поле, в котором заряженные частицы шнура плазмы движутся по спиралям.
Физика плазмы занимается широким кругом вопросов – от космических масштабов до атомной физики. Солнце и все звёзды состоят из плазмы. Внутри них в горячей плазме происходят термоядерные реакции. Межзвёздное пространство заполнено плазмой газовых туманностей. Плазма может быть применена для осуществления управляемой реакции синтеза лёгких ядер – дейтерия и трития. Реакция синтеза является источником энергии звёзд и водородной бомбы. Для её возникновения нужна температура порядка 100 млн. градусов, которую можно получить при помощи плазмы. Использовать очень горячую плазму возможно в ракетной технике. Полезный вес ракеты составляет тем большую часть от её общего веса, чем больше скорость истечения газа, а эта скорость тем больше, чем выше температура газа. При высоких температурах газ ионизируется и превращается в плазму. В устройстве, называемом плазмотроном, газ, нагретый до десятков тысяч градусов, отделяется от стенок для их защиты струёй втекающего холодного газа.
Одним из применений катодных лучей является катодное распыление, т.е. разрушение поверхности катода под действием ударяющихся о него положительных ионов. Катодное распыление используется для покрытия тонким слоем металла стеклянных зеркал для различных физических приборов, селеновых фотоэлементов и др.