Рефераты по Физике

Биофизика

Страница 1

Биофизические исследования в физике

Интерес физиков к биологии в XIX в. непрерывно возрастал. Одновре­менно и в биологических дисциплинах усиливалась тяга к физическим методам исследования. Последние все шире проникали в самые различ­ные области биологии. С помощью физики расширяются информационные возможности микроскопа. В начале 30-х годов XX в. появляется элект­ронный микроскоп. Эффективным орудием биологического исследования становятся радиоактивные изотопы, все более совершенствующаяся спек­тральная техника, рентгено-структурный анализ. Расширяется сфера при­менения рентгеновых и ультрафиолетовых лучей; электромагнитные ко­лебания используются не только как средства исследования, но и как факторы воздействия на организм. Широко проникает в биологию и, осо­бенно физиологию, электронная техника.

Наряду с внедрением новых физических методов развивается и так называемая молекулярная биофизика. Добившись огромных успехов в по­знании сущности неживой материи, физика начинает претендовать, поль­зуясь традиционными методами, на расшифровку природы живой мате­рии. В молекулярной биофизике создаются весьма широкие теорети­ческие обобщения с привлечением сложного математического аппарата. Следуя традиции, биофизик стремится в эксперименте уйти от очень слож­ного («грязного») биологического объекта и предпочитает изучать пове­дение выделенных из организмов веществ в возможно более чистом виде. Большое развитие получает разработка различных моделей биологических структур и процессов — электрических, электронных, математических и т. п. Создаются и изучаются модели клеточного движения (например, ртутная капля в растворе кислоты, совершающая ритмические движения, подобно амебе), проницаемости, нервного проведения. Большое внима­ние привлекает, в частности, модель нервного проведения, созданная Ф. Лилли. Это железное проволочное кольцо, помещенное в раствор со­ляной кислоты. При нанесении на него царапины, разрушающей поверх­ностный слой окисла, возникает волна электрического потенциала, кото­рая очень похожа на волны, бегущие по нервам при возбуждении. Изу­чению этой модели посвящается много исследований (начиная с 30-х годов), использующих математические методы анализа. В дальней­шем создается более совершенная модель, базирующаяся на кабельной теории. Основой ее построения явилась некоторая физическая аналогия между распределением потенциалов в электрическом кабеле и нервном

Остальные области молекулярной биофизики пользуются меньшей по­пулярностью. Среди них следует отметить математическую биофизику, лидером которой является Н. Рашевский. Математическая биофизика свя­зана со многими областями биологии. Она не только описывает в мате­матической форме количественные закономерности таких явлений, как рост, деление клеток, возбуждение, но и пытается анализировать слож­ные физиологические процессы высших организмов. В США школой Ра-шевского издается журнал «Математическая биофизика».

Биофизические исследования в биологии

Сильным толчком для формирования биофизики послужило возникнове­ние в конце XIX — начале XX в. физической химии, продиктованное необходимостью выявления механизмов, лежащих в основе химического взаимодействия. Эта новая дисциплина сразу же привлекла к себе вни­мание биологов тем, что она открывала возможность познания физико-химических процессов в тех «грязных», с точки зрения физика, живых системах, с которыми им трудно было работать. Ряд направлений, возник­ших в физической химии, породил такие же направления в биофизике.

Одним из крупнейших событий в истории физической химии была разработка С. Аррениусом (Нобелевская премия, 1903) теории электроли­тической диссоциации солей в водных растворах (1887), вскрывшая при­чины их активности. Эта теория вызвала интерес физиологов, ко­торым была хорошо известна роль солей в явлениях возбуждения, проведения нервных импульсов, в кровообращении и т. д. Уже в 1890 г. молодой физиолог В. Ю. Чаговец выступает с исследованием «О приме­нении теории диссоциации Аррениуса к электромоторным явлениям в живых тканях», в котором попытался связать возникновение биоэлектри­ческих потенциалов с неравномерным распределением ионов. Несколько позже с аналогичными соображениями выступил американский биолог Ж. Лёб, признавший позже приоритет Чаговца.

В перенесении физико-химических представлений на биологические явления принимает участие целый ряд основоположников физической химии. Исходя из явления движения ионов солей, В. Нернст (1908) сформулировал свой известный количественный закон возбуждения: по­рог физиологического возбуждения определяется количеством перенесен­ных ионов. Физик и химик В. Оствальд разработал теорию возникно­вения биоэлектрических потенциалов, основанную на допущении наличия на поверхности клетки полупроницаемой для ионов мембраны, способной разделять ионы противоположных зарядов. Тем самым были заложены основы биофизического направления в толковании проницаемости и структуры биологических мембран в широком смысле.

Физиология клетки.

Возникновение новых направлений в физиологии животных и человека, коренное изменение многих сложившихся ранее представлении и кон­цепций, связанные с переходом к исследованиям на клеточном, субкле­точном и молекулярном уровнях организации жизни, относятся к 40-м го­дам нашего столетия. Эти события, знаменующие настоящий перелом в развитии физиологических наук, явились следствием современной науч­но-технической революции. Грандиозные достижения физики и техники, в особенности электроники, автоматики и вычислительной техники, дав­шие в руки физиологов принципиально новые методы сбора и анализа информации, привели к технической революции в этой области знания. Подтвердилась справедливость высказывания И. П. Павлова, что наука движется толчками в зависимости от успехов, делаемых методикой.

Созданной в наше время новой инструментальной технике физиоло­гия обязана фундаментальными открытиями, возможностью проникнове­ния в интимные процессы жизнедеятельности, в их внутреннюю орга­низацию и механизм их регуляции.

Перейти на страницу:  1  2  3