Газовые лазеры
В гелий-неоновом лазере рабочая газовая смесь находится в газоразрядной трубке, длина которой может достигать 0,2…1 м. Трубка изготавливается из высококачественного стекла или кварца. Мощность генерации существенно зависит от диаметра трубки. Увеличение диаметра ведет к увеличению рабочей смеси, что способствует возрастанию мощности генерации. Однако с увеличением диаметра трубки уменьшается электронная температура плазмы, что приводит к уменьшению числа электронов, способных возбуждать атомы газов, что в конечном итоге снижает мощность генерации. Для уменьшения потерь торцы газоразрядной трубки закрыты плоскопараллельными пластинками, которые расположены не перпендикулярно к оси трубки, а так, чтобы нормаль к этой пластинке составляла с осью трубки угол iБ=arctg n (n – показатель преломления материала пластинки), называемый углом Брюстера. Особенность отражения электромагнитной волны от границы раздела различных сред под углом iБ широко применяется в лазерной технике. Установка выходных окон кювета с активной средой под углом Брюстера однозначно определяет поляризацию лазерного излучения. Для излучения, поляризованного в плоскости падения, потери в резонаторе минимальны. Естественно, именно это линейно-поляризованное излучение устанавливается в лазере и является преобладающим.
Газоразрядная трубка помещена в оптический резонатор, который образован зеркалами с интерференционным покрытием. Зеркала закреплены во фланцах, конструкция которых позволяет поворачивать зеркала в двух взаимно перпендикулярных плоскостях при юстировке путем вращения юстировочных винтов. Возбуждение газовой смеси осуществляется путем подачи высокочастотного напряжения с блока питания на электроды. Блок питания представляет собой высокочастотный генератор, обеспечивающий генерирование электромагнитных колебаний с частотой 30 МГц при помощи в несколько десятков ватт.
Широко распространено питание газовых лазеров постоянным током при напряжении 1000…2000 В, получаемым с помощью стабилизированных выпрямителей. В этом случае газоразрядная трубка подогревным и холодным катодом и анодом. Для зажигания разряда в трубке используется электрод, на который подается импульсное напряжение около 12 кВ. это напряжение получают путем разряда конденсатора емкостью 1…2 мкФ через первичную обмотку импульсного трансформатора.
Достоинством гелий-неоновых лазеров являются когерентность их излучения, малая потребляемая мощность (8…10 Вт) и небольшие размеры. Основные недостатки – невысокий КПД (0,01…0,1 %) и низкая выходная мощность, не превышающая 60 мВт. Эти лазеры могут работать в импульсном режиме, если для возбуждения использовать импульсное напряжение большой амплитуды при длительности в единицы микросекунд. Главные области практического применения гелий-неоновых лазеров – научные исследования и измерительная техника.
Из ионных лазеров наибольшее распространение получил аргоновый лазер непрерывного излучения на длине волны 0,48 мкм. Ионы аргона образуются в кювете в результате ионизации нейтральных атомов Ag II током большой плотности (~103 А/см3).
Инверсия населенностей в таком лазере между верхним (4p) и нижним (4s) рабочими уровнями создается таким образом. Уровень 4p, имеющий по сравнению с уровнем 4s большее время жизни, заселяются ионами аргона за счет из столкновения с быстрыми электронами в газовом разряде за счет переходов возбужденных ионов из группы расположенных выше уровней 5p. В то же время уровень 5p, обладающий очень коротким временем жизни, быстро опустошается за счет возвращения ионов в основное состояние. Так как уровни 5p, 5s, 4p состоят из групп подуровней, генерация может происходить одновременно на нескольких длинах волн: от 0,45 до 0,515.
В настоящие время аргоновые ионные лазеры являются самыми мощными источниками непрерывного когерентного излучения в ультрафиолетовом и видимом диапазонах спектра. Широкому распространению мощных аргоновых лазеров мешают их высокая стоимость, сложность, малый КПД (~0,1 %) и большая потребляемая мощность (3…5 кВт).
Исторический обзор
Первые расчеты, касающиеся возможности создания лазеров, и первые патенты относились главным образом к газовым лазерам, так как схемы энергетических уровней и условия возбуждения в этом случае более понятны, чем для веществ в твердом состоянии. Однако первым был открыт рубиновый лазер, хотя вскоре был создан и газовый лазер. В конце 1960 г. Джаван, Беннет и Херриотт создали гелий-неоновый лазер, работающий в инфракрасной области на ряде линий в районе 1 мкм. В последующие два года гелий-неоновый лазер был усовершенствован, а также были открыты друг е газовые лазеры, .работающие в инфракрасной области, включая лазеры с использованием других благородных газов и атомарного кислорода. Однако наибольший интерес к газовым лазерам был вызван открытием генерации гелий-неонового лазера на красной линии 6328 А при условиях, лишь незначительно отличавшихся от условий, при которых была получена генерация в первом газовом лазере. Получение генерации в видимой области спектра стимулировало интерес не только к поискам дополнительным переходов такого типа, но и к лазерным применениям, так как при этом были открыты многие новые и неожиданные явления, а лазерный луч получил новые применения в качестве лабораторного инструмента. Два года, последовавшие за открытием генерации на линии 6328 А, были насыщены большим количеством технических усовершенствований, направленных главным образом на достижение большей мощности и большей компактности этого типа лазера. Тем временем продолжались поиски новых длин волн и были открыты многие инфракрасные и несколько новых переходов в видимой области спектра. Наиболее важным из них является открытие Матиасом и импульсных лазерных переходов в молекулярном азоте и в окиси углерода.
Следующим наиболее важным этапом в развитии лазеров было, по-видимому, открытие Беллом в конце 1963г. лазера, работающего на ионах ртути. Хотя лазер на ионах ртути сам по себе не оправдал первоначальных надежд на получение больших мощностей в непрерывном режиме в красной и зеленой областях спектра, это открытие указало новые режимы разряда, при которых могут быть обнаружены лазерные переходы в видимой области спектра. Поиски таких переходов были проведены также среди других ионов. Вскоре было обнаружено, что ионы аргона представляют собой наилучший источник лазерных переходов с большой мощностью в видимой области и что на них может быть получена генерация в непрерывном режиме . В результате дальнейших усовершенствований аргонового лазера в непрерывном режиме была получена наиболее высокая мощность, какая только возможна в видимой области. В результате поисков была открыта генерация на 200 ионных переходах, сосредоточенных главным образом в видимой, а также в ультрафиолетовой частях спектра. Такие поиски, по-видимому, еще не окончены; в журналах по прикладной физике и в технических журналах часто появляются сообщения о генерации на новых длинах волн,
Перейти на страницу: 1 2 3 4 5