Поверхностная лазерная обработка
Лазерное легирование отличается от обычного лазерного упрочнения тем, что повышение твердости и других эксплуатационных показателей достигается не только за счет структурных и фазовых превращений в зоне лазерного воздействия, но и путем создания нового сплава с отличным от матричного материала химическим составом. Тем не менее в основе этого нового сплава лежит матричный материал.
В отличие от легирования при лазерной наплавке матричный материал может находиться лишь в небольшом слое между матрицей и направленным слоем, который служит связующей средой. Наплавленный же слой существенно отличается от матричного материала.
Эти виды поверхностной лазерной обработки очень перспективны вследствие роста дефицита чистых металлов типа W, Mo, NiCr, Co. V. Острой необходимости снижения расхода высоколегированных сталей и в связи с этим увеличения надежности и долговечности изделий из менее дефицитных конструкционных материалов.
Процессы локального легирования и наплавки реализуются с помощью как импульсного, так и непрерывного излучения по тем же схемам, что и обычное лазерное упрочнение. Технологические закономерности процесса, помимо ранее рассмотренных, зависят также от способа подачи в зону обработки легирующего состава, вида легирующего элемента (элементов), свойств матричного материала.
Существуют следующие способы подачи легирующего элемента (среды) в зону лазерного воздействия:
* нанесение легирующего состава в виде порошка на обрабатываемую поверхность;
* обмазка поверхности специальным легирующим составом;
* легирование в жидкости (жидкой легирующей среде);
* накатывание фольги из легирующего материала на обрабатываемую поверхность;
* легирование в газообразной легирующей среде;
* удержание ферромагнитных легирующих элементов на матричной поверхности магнитным полем;
* электроискровое нанесение легирующего состава;
* плазменное нанесение покрытия;
* детонационное нанесение легирующего состава;
* электролитическое осаждение легирующего покрытия;
* подача легирующего состава в зону обработки синхронно с лазерным излучением.
Каждый из этих способов имеет свои достоинства и недостатки, которые определяют целесообразность его использования в конкретном случае.
Размеры легированной зоны зависят в основном от энергетических параметров излучения и толщины покрытия из легирующего материала. Как правило, легирование импульсным излучением обеспечивает меньшие размеры легированной зоны, чем при обработке непрерывным излучением. В частности, если при импульсной обработке глубина зоны достигает 0,3—0,7 мм, то применение непрерывного излучения мощных СO2-лазеров позволяет увеличить глубины зоны до 3 мм.
На степень упрочнения влияет как вид легирующего элемента, так и состав матричного материала. Например, при легировании, алюминиевого сплава AЛ 25 железом, никелем и марганцем достигается различная
Микротвердость:
Легирующий элемент П,. МПа
Mn 2180
Xi 2200
Fe . . 3500
После термообработки 1000
Без термообработки 850
Максимальная концентрация К2 элемента в облученной зоне может быть определена из соотношения
где K1 — концентрация элемента в покрытии; V1— объем покры тия; V2 — объем расплава. Вследствие расплавления материала шероховатость легированной поверхности обычно велика, поэтому после этой операции требуется финишная (абразивная) обработка. Припуск на такую обработку обычно составляет до 0,4 мм.
2.5. Эксплуатационные показатели материалов после лазерной поверхностной обработки
Лазерная поверхностная обработка вызывает улучшение многих эксплуатационных характеристик облученных материалов. Специфическая топография обработанной поверхности, которая характеризуется образованием «островков» разупрочнения, служащих своеобразными демпферами для возникающих структурных и термических напряжений, а также «карманами» для удержания смазочного материала, позволяет существенно повысить износостойкость материала вследствие значительного уменьшения коэффициента трения (порой до 2 раз).
У большей части конструкционных сталей и сплавов наблюдалось увеличение износостойкости после лазерной обработки б 3—5 раз.
Такие механические свойства, как предел прочности σ, ударная вязкость КС, после лазерного облучения несколько снижаются, в то время как предел текучести σ0,2 практически остается без изменения. Однако с помощью дополнительного отпуска для снятия напряжений и σB, и σ0.2 могут быть увеличены в 1,3 раза по сравнению со стандартной термообработкой.
Лазерное упрочнение приводит к повышению теплостойкости (термостойкости) материала, например инструментальной стали Р6М5 па 70—80е С, что влияет на износостойкость режущих инструментов, изготовленных из этой стали. Насыщение матричного материала — алюминиевого сплава АЛ25 — железом, никелем, марганцем, медью приводит к увеличению его жаропрочности в 1,5—4 раза. Такое значительное улучшение жаропрочности представляет большой интерес для двигателестроения, где алюминиевые сплавы работают в условиях высоких температур.
Лазерное облучение позволяет в широких пределах изменять напряженно-деформированное состояние материала. Изменяя условия облучения, можно получать остаточные напряжения разной величины.
При маркировке лазерным излучением достигается миниатюрность наносимого знака. Ширина образующей знака может не превышать 10 мкм при размерах самого знака до нескольких десятков микрометров. Бесконтактность метода и отсутствие механического воздействия позволяют маркировать тонкостенные, хрупкие детали, узлы и изделия в сборе. Высокая точность и качестве знаков гарантируют надежность и стабильность их считывания фотоэлектронными устройствами. К достоинствам лазерной маркировки относятся высокая производительность и возможность полной автоматизации процесса.
Одна из наиболее распространенных схем маркировки Реализует точечно-матричный метод нанесения знаков, при котором каждая матрица представляет собой прямоугольное поле с 63 возможными положениями зон лазерного воздействия (матрица «9X7»). При построчном сканировании излучения энергия подводится по программе к тем точкам матрицы, совокупность которых обеспечивает получение требуемого буквенно-цифрового знака. Зона элементарного воздействия в этом случае представляет собой. микроотверстие (лунку) диаметром 70—80 мкм. При частоте подачи импульсов 4 кГц с помощью матрицы «9X7» можно обеспечить производительность маркировки до 30 знаков в секунду.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11