Солнечная активность, атмосфера и погода
§3. Влияние солнечных катаклизмов на Землю. Итак, где же нам искать проявления солнечно-земных связей? "Конечно же, на нашей планете!" - ответите вы и будете абсолютно правы: проявления солнечно-земных взаимодействий необходимо искать в земных оболочках.
3.1. Общие соображения о солнечно- земных связях
Солнечная активность оказывает широкое воздействие на процессы, происходящие на нашей планете. До сих пор мы говорили о Солнце, но было бы логично завершить наш разговор хотя бы кратким описанием того, как солнечная активность воздействует на Землю. Солнечная активность дает о себе знать на Земле двумя типами излучения: электромагнитным (от гамма-лучей с длинной волны примерно 0,01 А до километровых радиоволн) и корпускулярным (потоки заряженных части, имеющие плотность от нескольких до десятков частиц в 1 кубическом сантиметре с энергиями от сотен до миллионов эВ). На пути к Земле они встречают многочисленные преграды, главными из которых являются магнитные поля в межпланетном и околоземном пространстве. Это обстоятельство сказывается по разному. Электромагнитное излучение бесприпятственно проникает в верхние слои земной атмосферы, где оно в основном поглощается и преобразуется. Поврхности Земли достигает лишь радиация Солнца в ближнем ультрафиолете и видимой области спектра, интенсивность которой почти не зависит от солнечной активности, и в узком участке радиоспектра, которая очень слаба. Основным объектом приложения воздействия этого типа солнечного излучения, является ионосфера, своеобразное зеркало, отражающее радиоволны к Земле, и нейтральная атмосфера Земли. Верхние слои земной атмосферы легко поддаются воздействию солнечной активности, и поэтому иногда характеристики происходящих в них изменений даже используют в качестве косвенных индексов солнечной активности.
Совсем иначе обстоит дело с воздействием солнечной активности на тропосферу, нижнюю часть земной атмосферы, которая определяет климат и погоду на Земле. До сравнительно недавнего времени многие очень авторитетные метеорологи утверждали, что погода на Земле обусловлена чем угодно, только не солнечной активностью. Это явилось своеобразной реакцией на другу крайнюю точку зрения, заключавшуюся в том, что любое нарушение погодных условий в любом месте на Земле может быть вызвано проходящей в это время по диску Солнца активной областью. В качестве главного аргумента против такого воздействия выдвигалась большая инерция земной атмосферы и ее практически полная изолированность от внешних воздействий, тем более таких слабых в энергетическом отношении, как счолнечная активность.
Кроме того, отмечалась неустойчивость обнаруженных статистических связей, а иногда даже полное их отсутствие. Тем не менее детальный анализ проблемы Солнце- тропосфера привел к заключению, что солнечная активность определено воздействует и на нижнюю часть атмосферы нашей планеты. Только оно складывается лишь в неустойчивых областях.
Еще более трудным для решения выглядит вопрос о воздействии солнечной активности на биосферу Земли. В последние годы все больше исследователей склоняется к мнению, что воздействие солнечной активности на биосферу Земли определенно существует, причем оно бывает как непосредственным, так и связанным с изменением погоды и климата.
Наконец, иногда говорят даже о возможных изменениях особенностей строения земной коры или внутреннего строения Земли в зависимости от уровня солнечной активности. Но эта возможность еще более проблематична, хотя было бы преждевременно отвергать ее только на этом основании.
Далее будут рассмотрены вопросы воздействия солнечной активности на различные оболочки нашей планеты.
3.2. Солнечная активность и верхняя атмосфера.
Начнем с влияния на верхнюю атмосферу Земли электромагнитного излучения Солнца. Как уже говорилось, оно оказывает воздействие главным образом на земную ионосферу, т. е. часть верхней атмосферы от высоты 50-70 км до нескольких тысяч километров, в которой имеется достаточное количество ионов и электронов, чтобы изменить распространение электромагнитной волны. Ионизация нейтральных частиц атмосферы вызывается солнечным излучением и поэтому плотность электронов в ней изменяется в зависимости от высоты Солнца над горизонтом, уровня солнечной активности и фазы ее 11-летнего цикла, а также от времени суток и сезона года. Обычно атмосферу делят на четыре области: В, Е, F1 и F2. Область D расположена на высоте 50—90 км и отличается невысокой электронной плотностью и значительным поглощением радиоволн. Ионизация се обусловлена прежде всего солнечным излучением в линии 1216 А. Область Е характеризуется высотами 85—140 км и высокой электрон-ной плотностью (5-103 —104 см-3 ночью и 1-105 — 4-105 см -3 днем. Ее ионизация вызывается в основном рентгеновским излучением в интервале длин волн 8—104 А.1 Области F1 и F2 расположены соответственно на высотах 140—230 км и 200—600 км. Плотность электронов в области F1 летом равна 2-105 см-3, а зимой— 4-105 см-3 и в области F2 — 2*106 и 2*106 см-3. Основным источником ионизации в этих областях является солнечное ультрафиолетовое излучение в интервале длин волн 300—910 Д. Заметим, что в полярных районах ионосфера подвержена также воздействию корпускулярных потоков, идущих вдоль геомагнитных силовых линий из магнитосферы Земли. Как вы уже могли заметить, высоты областей ионосферы, как и величина плотности электронов в них, испытывают колебания с течением времени.
Поскольку электронная плотность в областях Е, F1 и особенно F2 сильно зависит от уровня солнечной активности, выражаемого числами Вольфа или плотностью потока радиоизлучения Солнца на волне 10,7 см, увеличиваясь от минимума к максимуму 11-летнего солнечного цикла соответственно в 1,5—2 раза и 2,5— 4 раза, изменяются условия радиосвязи, особенно на коротких и очень длинных волнах. И это имеет практическую важность для всех специалистов, нуждающихся в устойчивой радиосвязи. Учитывая, что увеличение электронной плотности в поглощающем слое приводит к увеличению в нем поглощения, в эпоху максимума 11-летнего цикла солнечной активности целесообразно в коротковолновом диапазоне радиоволн переходить на более короткие волны, а в эпоху минимума цикла — на более длинные. В то же время, в годы максимума 11-летних циклов должна значительно улучшаться радиосвязь на самых длинных волнах (больше 10000 м), распространяющихся путем отражения от нижней границы области Е, поскольку с повышением плотности электронов в лей в это время улучшаются и ее отражательные свойства.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15