Электрический ток в газах
Строение данной среды на основе электронной теории. Электронная теория, классическая (неквантовая) теория электромагнитных процессов, в основе которой лежат представления о строении вещества из электрически заряженных частиц — электронов и атомных ядер (см. Лоренца — Максвелла уравнения). Лоренца — Максвелла уравнения, Лоренца уравнения, фундаментальные уравнения классической электродинамики, определяющие микроскопические электромагнитные поля, создаваемые отдельными заряженными частицами. Уравнения Лоренца-Максвелла лежат в основе электронной теории (микроскопической электродинамики), построенной Х. А. Лоренцом в конце 19 — начале 20 вв. В этой теории вещество (среда) рассматривается как совокупность электрически заряженных частиц (электронов и атомных ядер), движущихся в вакууме. В уравнениях Лоренца-Максвелла электромагнитное поле описывается двумя векторами: напряжённостями микроскопических полей — электрического е и магнитногоh. Все электрические токи в электронной теории — чисто конвекционные, т. е. обусловлены движением заряженных частиц. Плотность тока j = ru, где r — плотность заряда, а u — его скорость. В обычных условиях все газы состоят в основном из нейтральных атомов и молекул и поэтому не проводят электрического тока, т. е. являются диэлектриками. С повышением температуры атомы и молекулы ионизируются (распадается на положительно заряженные ионы и электроны. В газе могут образовываться и отрицательные ионы, кот. появляются благодаря прис. электронов к нейтральным атомам.), и газ постепенно превращается в плазму, хорошо проводящую электрический ток. Плазма (от греч. plásma — вылепленное, оформленное), частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы. Ионизация газа, кроме того, может быть вызвана его взаимодействием с электромагнитным излучением (фотоионизация) или бомбардировкой газа заряженными частицами. Свободные заряженные частицы в плазме — особенно электроны — легко перемещаются под действием электрического поля. Применительно к плазме несколько необычный смысл (по сравнению с др. разделами физики) вкладывается в понятия «низкотемпературная» и «высокотемпературная». Низкотемпературной принято считать плазму с Ti , а высокотемпературной — плазу с Ti и более. Это условное разделение связано с возможностью для плазмы достигать чрезвычайно больших температур. В состоянии плазмы находится подавляющая часть вещества Вселенной — звёзды, звёздные атмосферы, туманности галактические и межзвёздная среда. Около Земли плазма существует в космосе в виде солнечного ветра, заполняет магнитосферу Земли (образуя радиационные пояса Земли) и ионосферу. Процессами в околоземной плазмы обусловлены магнитные бури и полярные сияния. Отражение радиоволн от ионосферной плазмы обеспечивает возможность дальней радиосвязи на Земле. В лабораторных условиях и промышленных применениях плазма образуется в электрическом разряде в газах (дуговом разряде, искровом разряде, тлеющем разряде и пр.), в процессах горения и взрыва, используется в плазменных ускорителях, магнитогидродинамических генераторах и во многих др. устройствах. Термин «плазма» в физике был введён в 1923 американским учёными И. Ленгмюром и Л. Тонксом, проводившими зондовые измерения параметров низкотемпературной газоразрядной плазмы. Основные свойства плазмы. В резком отличии свойств плазмы от свойств нейтральных газов определяющую роль играют два фактора. Во-первых, взаимодействие частиц плазмы между собой характеризуется кулоновскими силами притяжения и отталкивания, убывающими с расстоянием гораздо медленнее (т. е. значительно более «дальнодействующими»), чем силы взаимодействия нейтральных частиц. По этой причине взаимодействие частиц в плазме является, строго говоря, не «парным», а «коллективным» — одновременно взаимодействует друг с другом большое число частиц. Во-вторых, электрические и магнитные поля очень сильно действуют на плазму (в то время как они весьма слабо действуют на нейтральные газы). Наличие свободных заряженных частиц. Проводники - это такие тела, в которых имеются свободные частицы, обладающие электрическим зарядом и способные ускоряться и, перемещаться под действием приложенных к ним электрических сил. В газах при обычных условиях почти нет свободных заряженных частиц, так как они являются диэлектриками (состоят из нейтральных атомов и молекул). Только вследствие нагревания или воздействия излучением (ионизация) образуются свободные заряженные частицы (ионы и электроны). Природа эл. тока-процесс ионизации газов. Ионизация, образование положительных и отрицательных ионов и свободных электронов из электрически нейтральных атомов и молекул. Термином «ионизация» обозначают как элементарный акт (ионизации атома, молекулы), так и совокупность множества таких актов (ионизация газа). Ионизация в газе. Для разделения нейтрального невозбуждённого атома (молекулы) на две или более заряженные частицы, т. е. для его ионизации, необходимо затратить энергию. Для всех атомов данного элемента (или молекул данного химического соединения), ионизующихся из основного состояния одинаковым образом (с образованием одинаковых ионов), энергия ионизации одинакова. Простейший акт ионизации — отщепление от атома (молекулы) одного электрона и образование положительного иона. Свойства частицы по отношению к такой ионизации характеризуют её ионизационным потенциалом, представляющим собой энергию ионизации, деленную на заряд электрона. Присоединение электронов к нейтральным атомам или молекулам (образование отрицательного иона), в отличие от других актов ионизации, может сопровождатьс