Рефераты по Физике

Сила тяжести. Невесомость

Страница 2

Ньютон начал с определения величины гравитационного взаимодействия, с которым Земля действует на Луну путем сравнения ее с величиной силы, действующей на тела на поверхности Земли. На поверхности Земли сила тяготения придает телам ускорение g = 9,8м/с2. Но чему равно центростремительное ускорение Луны? Так как Луна движется по окружности почти равномерно, ее ускорение может быть рассчитано по формуле:

a = g2/r

Путем измерений можно найти это ускорение. Оно равно

2,73*10-3м/с2. Если выразить это ускорение через ускорение свободного падения g вблизи поверхности Земли, то получим:

Таким образом, ускорение Луны, направленное к Земле, составляет 1/3600 ускорения тел вблизи поверхности Земли. Луна удалена от Земли на 385000 км, что превышает приблизительно в 60 раз радиус Земли, равный 6380 км. Значит Луна в 60 раз дальше от центра Земли, чем тела, находящиеся на поверхности Земли. Но 60*60 = 3600! Из этого Ньютон сделал вывод, что сила тяготения, действующая со стороны Земли на любые тела, уменьшается обратно пропорционально квадрату их расстояния от центра Земли:

Сила тяготения ~ 1/r2

Луна, удаленная на 60 земных радиусов, испытывает силу гравитационного притяжения, составляющую всего лишь 1/602 = 1/3600 той силы, которую она испытывала бы, если бы находилась на поверхности Земли. Любое тело, помещенное на расстоянии 385000 км от Земли, благодаря притяжению Земли приобретает то же ускорение, что и Луна, а именно 2,73*10-3 м/с2.

Ньютон понимал, что сила тяготения зависит не только от расстояния до притягиваемого тела, но и от его массы. Действительно, сила тяготения прямо пропорциональна массе притягиваемого тела, согласно второму закону Ньютона. Из третьего закона Ньютона видно, что когда Земля действует силой тяготения на другое тело (например, Луну), это тело, в свою очередь, действует на Землю с равной по величине и противоположно направленной силой.

Благодаря этому Ньютон предположил, что величина силытяготения пропорциональна обеим массам. Таким образом:

где m3 - масса Земли, mT - масса другого тела, r - расстояние от центра Земли до центра тела.

Продолжая изучение гравитации, Ньютон продвинулся еще на шаг вперед. Он определил, что сила, необходимая для удержания различных планет на их орбитах вокруг Солнца, убывает обратно пропорционально квадрату их расстояний от Солнца. Это привело его к мысли о том, что сила, действующая между Солнцем и каждой из планет и удерживающая их на орбитах, также является силой гравитационного взаимодействия. Также он предположил, что природа силы, удерживающей планеты на их орбитах, тождественна природе силы тяжести, действующей на все тела у земной поверхности. Проверка подтвердила предположение о единой природе этих сил. Тогда если гравитационное воздействие существует между этими телами, то почему бы ему не существовать между всеми телами? Таким образом, Ньютон пришел к своему знаменитому Закону всемирного тяготения, который можно сформулировать так:

Каждая частица во Вселенной притягивает любую другую частицу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Эта сила действует вдоль линии, соединяющей эти две частицы.

Величина этой силы может быть записана в виде:

m1* m2

F = G ------------

R2

где m1 и m2 - массы двух частиц, R - расстояние между ними, а G - гравитационная постоянная, которая может быть измерена экспериментально и для всех тел имеет одно и то же численное значение.

Это выражение определяет величину силы тяготения, с которой одна частица действует на другую, находящуюся от нее на расстоянии R. Для двух не точечных, но однородных тел это выражение правильно описывает взаимодействие, если - расстояние между центрами тел. Кроме того, если протяженные тела малы по сравнению с расстояниями между ними, то мы не намного ошибемся, если будем рассматривать тела как точечные частицы (как это имеет место для системы Земля - Солнце).

Если нужно рассмотреть силу гравитационного притяжения, действующую на данную частицу со стороны двух или нескольких других частиц, например силу, действующую на Луну со стороны Земли и Солнца, то необходимо для каждой пары взаимодействующих частиц воспользоваться формулой закона всемирного тяготения, после чего векторно сложить силы, действующие на частицу.

Величина постоянной G должна быть очень мала, так как мы не замечаем никакой силы, действующей между телами обычных размеров. Сила, действующая между двумя телами обычных размеров, впервые была измерена в 1798г. Генри Кавендишем - через 100 лет после того, как Ньютон опубликовал свой закон. В настоящее время принято считать, что эта постоянная равна G = 6,67*10-7Н*м2/кг2.

Итак, гравитационные силы вездесущи и всепроникающи. Почему же мы не ощущаем притяжения большинства тел? Если подсчитать, какую долю от притяжения Земли составляет, например, притяжение Эвереста, то окажется, что лишь тысячные доли процента. Сила же взаимного притяжения двух людей среднего веса при расстоянии между ними в один метр не превышает трех сотых миллиграмма. Так слабы гравитационные силы. Тот факт, что гравитационные силы, вообще говоря, гораздо слабее электрических, вызывает своеобразное разделение сфер влияния этих сил. Гравитационные силы становятся ощутимыми, а порой и грандиозными, когда во взаимодействии фигурируют такие огромные массы, как массы космических тел: планет, звезд и т.д. Так, Земля и Луна притягиваются с силой примерно в 20 000 000 000 000 000 тонн. Даже такие далекие от нас звезды, свет которых годы идет от Земли, притягиваются с нашей планетой с силой, выражающейся внушительной цифрой, - это сотни миллионов тонн.

Итак, Галилей утверждал, что все тела, отпущенные с некоторой высоты вблизи поверхности Земли, будут падать с одинаковым ускорением g (если пренебречь сопротивлением воздуха). Сила, вызывающая это ускорение называется силой тяжести. Применим к силе тяжести второй закон Ньютона, рассматривая в качестве ускорения a ускорение свободного падения g. Таким образом, действующую на тело силу тяжести можно записать как:

Перейти на страницу:  1  2  3  4