Суперструны и М-теория
Суть теории Калуцы-Клейна состоит в том, что некоторые наборы вроде бы никак не связанных полей в четырёхмерном пространстве могут оказаться осколками единого поля в пространстве более высокой размерности. У существующих в 10 и 11-мерных пространствах полей достаточно компонентов, чтобы упаковать в них все поля, имеющиеся в четырехмерии. Но как объяснить, почему десятимерие распалось именно на 4 + 6 измерения, а не, например, 3 + 7 или 5 + 5?
На сегодняшний день неизвестно, как осуществляется выбор между разными вариантами скрутки и разбивки. Однако возможности такого выбора встроены в теорию суперструн, поскольку суперструны порождают гравитацию, которая и определяет геометрию пространства-времени. Можно определить, может ли то или иное шестимерное пространство быть отобранным суперструной, чтобы из десятимерия получился наблюдаемый четырехмерный мир. Определяющим критерием для этого служит суперсимметрия — не во всяком пространстве может существовать суперструна, структура шестимерия должна быть согласована со свойствами наблюдаемого мира. Дело в том, что при скручивании лишних измерений в очень маленькие пространства, свойства теории в остающихся измерениях отражают некоторые геометрические характеристики этих пространств.
От наблюдаемых свойств элементарных частиц (при доступных малых энергиях в ускорителях) переходят к теории суперструн, экстраполируя эти свойства на очень высокие энергии (не доступные пока, но существенные для струнного описания). В рамках струнной формулировки теории ученые пытаются понять, каковы механизмы, «переводящие» струнные сущности (иногда непосредственно не наблюдаемые, как и свойства полей, находящихся на мировом листе струны) в термины геометрии скрученных измерений, а затем на язык четырехмерия и существующих в нем элементарных частиц.
Физические процессы описаны уравнениями, как правило с некоторыми начальными условиями. Т. е. теоретически мы можем рассчитать поведение какой-либо системы на длительное время, но практически это можно сделать лишь в некотором приближении. Для наиболее точного вычисления была сознана теория возмущений, т. е. сначала поведение системы рассчитывается в приближении, а затем вносятся коррективы. Однако существуют ситуации, в которых теория возмущений неприменима, например, если необходимо рассчитать движение в системе тройной звезды, массы звезд в которой примерно одинаковые. Такую ситуацию называют «сильная связь» и подобные задачи решаются только с абсолютной точностью, если их решение вообще может быть проведено.
Проблема сильной связи есть и в теории суперструн. Прежде чем приступить к ее рассмотрению, необходимо обратить внимание на один очень важный момент: струнам доступно то, что недоступно частицам. При наличии хотя бы одного скрученного измерения они могут «наматываться» на него, делая один или несколько витков. С точки зрения наблюдателя это выглядит как появление некоторых новых частиц. При определённых соотношения между радиусом свернутого измерения и количеством оборотов струны такие частицы становятся легкими, и их можно сравнивать с теми безмассовыми частицами, появление которых ожидалось с самого начала, как соответствующих низшим гармоникам колебаний струны.
В итоге получается, что при слабом взаимодействии между струнами, в рамках стандартной теории возмущений струна порождает определенные частицы, реализующие некоторые виды симметрии, в частности суперсимметрию. В другом диапазоне интенсивности взаимодействия, вне рамок теории возмущений (в области сильной связи) струна может порождать другие частицы.
Рассмотрим подробнее 5 существующих на сегодняшний день теорий суперструн.
Большинство удачных теорий физики элементарных частиц основываются на калибровочной симметрии. В таких теориях различные поля могут переходить одно в другое. Эти переходы полностью определяются калибровочной группой теории. Если можно провести некое калибровочное преобразование в точке пространства и при этом теория не изменится, то говорят, что теория имеет локальную калибровочную симметрию.
У струн могут быть совершенно произвольные условия на границе. Например, замкнутая струна имеет периодичные граничные условия - струна "переходит сама в себя". У открытых же струн могут быть два типа граничных условий - условия Неймана и условия Дирихле. В первом случае конец струны может свободно двигаться, правда, не унося при этом импульса. Во втором случае, конец струны может двигаться только по некоторому многообразию. Это многообразие и называется D-браной или Dp-браной (при использовании второго обозначения 'p' - целое число, характеризующее число пространственных измерений многообразия).
D-браны могут иметь число пространственных измерений от -1 до числа пространственных измерений заданного пространства-времени. Например, в теории суперструн 10 измерений - 9 пространственных и одно временное. Таким образом, для суперструн может существовать D9-брана, но возникновение D10-браны невозможно. Отметим, что в этом случае концы струн фиксированы на многообразии, покрывающем все пространство, поэтому они могут двигаться везде, так что это сводится к наложению условия Неймана. В случае p=-1 все пространственные и временные координаты фиксированы, и такая конфигурация называется инстантоном или D-инстантоном. Если p=0, то все пространственные координаты фиксированы, и конец струны может существовать лишь в одной единственной точке в пространстве, так что D0-браны зачастую называют D-частицами. Совершенно аналогично D1-браны называют D-струнами. Кстати, само слово 'брана' произошло от слова 'мембрана', которым называют 2-мерные браны, или 2-браны. В действительности D-браны динамичны, они могут флуктуировать и двигаться. Например, они взаимодействуют гравитационно.
Используя минимально-связанную теорию возмущений, можно выделить пять различных согласованных суперструнных теорий, известных как Type I SO(32), Type IIA, Type IIB, SO(32) Гетеротическая (Heterotic) и E8 x E8 Гетеротическая (Heterotic).
Type IIB | Type IIA | E8 x E8 Гетеротическая | SO(32) Гетеротическая | Type I | |
Тип струн | Замкнутые | Замкнутые | Замкнутые | Замкнутые | Открытые и замкнутые |
10d Суперсимметрия | N=2 (киральная) | N=2 (некиральная) | N=1 | N=1 | N=1 |
10d Калибровочные группы | нет | нет | E8 x E8 | SO(32) | SO(32) |
D-браны | -1,1,3,5,7 |
0,2,4,6,8 |
нет |
нет | 1,5,9 |
Перейти на страницу: 1 2 3 4 5