Физика как наука
Состояние электромагнитного поля в теории Максвелла задается напряженностью электрического поля и магнитной индукцией. Исследовав связи между электрическими и магнитными полями. Максвелл из того, что изменяющееся электрическое поле создает магнитное поле, которое само создает электрическое поле, и количественного анализа этих соотношений пришел к выводу о распространении данного процесса в пространстве. Иными словами, переменное электрическое поле в одной точке создает магнитное поле по соседству с ней, которое в свою очередь вызывает электрическое поле чуть дальше. Поскольку этот процесс происходит снова и снова, возникает колеблющееся электромагнитное поле, непрерывно расширяющееся в пространстве. При этом электрическое или магнитное поле распространяется независимо от способов их возникновения (будь то колебания зарядов или появление магнитов). Вычисления скорости распространения поля, выполненные по данным о наблюдаемом токе, индуцированным движущимися магнитами, или по данным о создаваемом токами магнитном поле, выявили. что она равна скорости света. И хотя Максвелл в своих вычислениях использовал измерения электрических токов и магнитных полей, т.е. явлений, казалось бы, не имеющих со светом ничего общего. Он из этих измерений сделал вывод о том, что колеблющееся электрическое поле распространяется в виде волн со скоростью света. Этим была установлена связь между оптикой и электричеством - областями, которые ранее представлялись не связанными друг с другом. Оптика стала разделом электродинамики.
Таким образом, свет оказался не чем иным, как распространением электромагнитных волн. Экспериментальное их обнаружение Г.Герцем в 1880 г. означало победу электромагнитной концепции, хотя она в сознании ученых утвердилась не сразу (концепции Ньютона понадобилось для своего утверждения половина века, концепции Максвелла понадобилась для этого четверть века). Герц установил, что электромагнитные волны имеют свойство, аналогичные световым: преломление, отражение, интерференцию, дифракцию, поляризацию, ту же скорость распространения. ( Оценивая результаты своих экспериментов, Герц прекрасно понимал, что они рушат всякую теорию, считающую, что электрические силы распространяются в пространстве мгновенно.)
Концепция Максвелла явилась новым шагом в понимании природы электрических и магнитных явлений, обусловившим возможность появления радио, радиолакации, телевидения и т.д. Она дала ответ на вопрос о природе световых волн: световая волна есть волна электромагнитного поля, распространяющаяся в пространстве. Открытие Максвелла принято сравнивать по степени важности с открытием Ньютоном закона всемирного тяготения. Если Ньютон ввел понятие всеобщего поля тяготения, то Максвелл ввел понятие электромагнитного поля и установил законы его распространения.
Развитием концепции Максвелла было измерение П.Н. Лебедевым давления света, предсказанного Максвеллом, а также использование электромагнитных волн для беспроволочной связи А.С.Поповым и Г.Маркони.
5. Молекулярно-кинетическая концепция тепловых процессов
Как отмечалось ранее, глубокое изучение тепловых процессов предполагает учет молекулярного строения вещества. Решение такой задачи оказалось сопряженным с использованием статистических методов. Включение тепловых процессов в рамки механической картины мира привело к открытию статистических законов, в которых связи между физическими величинами носят вероятностный характер. В классической статистической механике, в отличие от динамической, задаются не координаты и импульсы частиц системы, а функция распределения частиц по координатам и импульсам, имеющая смысл плотности вероятности обнаружения наблюдаемых значений координат и импульсов.
Господство концепции теплорода и отсутствие необходимых экспериментальных фактов в первой половине XIX века задержали развитие молекулярно-кинетической теории вещества. Открытие закона сохранения энергии продемонстрировало связь теплоты с движением невидимых частиц вещества, дав толчок исследованиям, начатым Р.Бойлем, М.В.Ломоносовым, Д.Бернулли и др. М.В.Ломоносов впервые высказал идею о тепловом вращательном движении атомов. К этой идеи пришел и Г.Дэви. Д.Дальтон установил, что атомы одного и того же химического элемента обладают идентичными свойствами и, введя понятие атомного веса химического элемента, дал ему определение как отношения массы одного атома этого элемента к массе одного атома водорода. А.Авогадро установил. что идеальные газы (газы с пренебрежительно малыми силами взаимодействия между его частицами) при одинаковых температуре и давлении содержат в единице объема одинаковые количества молекул.
К середине XIX века эквивалентность теплоты и энергии признало большинство ученых, теплоту стали рассматривать как молекулярное движение. Опыты Ж.Л.Гей-Люссака и Д.Джоуля подтвердили независимость внутренней энергии идеальных газов от их объемов, что было свидетельством ничтожности действующих между их молекулами сил. Р.Клаузиус к поступательному движению молекул добавляет вращательное и внутримолекулярное колебательное движение и дает объяснение закону Авогадро как следствию того. что молекулы любых газов обладают одинаковой "живой силой" поступательного движения. Для данного этапа развития молекулярно-кинетической теории газов важным было вычисление средних значений различных физических величин, таких как скорость движения молекул, число их столкновений в секунду, длина свободного пробега и т.д., определение зависимости давления газа от числа молекул в единице объема и средней кинетической энергии поступательного движения молекул - все это дало возможность выявить физический смысл температуры как меры средней кинетической энергии молекул.
Следующий этап в развитии молекулярно-кинетической теории газов начался с работ Д.Максвелла. Благодаря введению понятия вероятности был установлен закон распределения молекул по скоростям (всякая система, вначале содержащая быстрые (горячие) и медленные (холодные) молекулы, должна прийти в такое состояние, при котором большинство молекул движется со средними скоростями, становясь чуть теплыми), что и привело к созданию статистической механики. В работах Л.Больцмана, построившего кинетическую теорию газов, было дано статистическое обоснование второго начала термодинамики - необратимость процессов была связана со стремлением систем к наиболее вероятному состоянию. Выявление статистического смысла второго начала термодинамики имело важное значение - оказалось , что второе начало термодинамики в отличие от первого имеет границы своей применимости: оно не применимо к движению отдельной молекулы. Необратимость движения обнаруживается в поведении лишь огромного числа молекул.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43