Рефераты по Физике

Головка рубинового лазера с термоохлаждением

Страница 1

Введение

При конструировании систем охлаждения импульсных лазеров с частотой генерации fг<1Гц предпочтительны воздушно-вихре­вые и полупроводниковые системы термостабилизации. Для лазеров с частотой генерации импульсов fг > 1 Гц рекомендуются жидкост­ные системы охлаждения.

Рациональная конструкция узлов крепления стержня активного вещества и лампы накачки, а также оптимальный выбор зазоров и сечений каналов теплоотводов позволяют повысить эффективность теплообмена, уменьшить перепад температуры в кристалле, сократить расход охлаждающей среды. Фотохимическая устойчивость, агрес­сивность и коррозирующее действие охлаждающих сред на материалы конструкции могут явиться причиной нарушения нормальной работы даже самой надежной системы охлаждения.

1. Виды охлаждающих систем

Для охлаждениея лазерной головки применяются различные виды охлаждающих систем. Выбор нужного типа системы зависит от параметров лазера и условий его использования. Рассмотрим некоторые типы систем.

1.1. Системы глубокого охлаждения.

Для спектроскопических иссле­дований характеристик различных активных веществ лазеров, а также с целью получения оптимальных режимов выходной энергии и частоты излучения применяют криостаты. В кристалле рубина с 0,05% -ным содержанием ионов Сг3+ при 77 К по­роговая мощность накачки на 40% меньше, чем при 300 К. Кристаллы CaWO4 : Nd3+ имеют порог генерации при 77 К вдвое меньший, чем при 300 К. Выходная энергия кристалла CaF2 : Dy2+ при Т = 77 К и пороговом значении энергии накачки равна Евых = 1,5 • 10-6 Дж. Для быстрого охлаждения активного вещества применяется мало­габаритная двухконтурная система с раздельным охлаждением. Камера этой системы представляет собой герметичный цилиндр эллиптического сечения с высокой степенью чистоты обработ­ки внутренней поверхности. В одном из сопряженных фокусов'ци­линдр а находится микрохолодильник с активным веществом, а в дру.гом—импульсная лампа накачки. Лампа охлаждается оптически прозрачной фторо- или кремнийсодержащей жидкостью, тепло от ко­торой отбирается в специальном теплообменнике жидким азотом, выходящим из микрохолодильника. Жидкостный контур охлажде­ния — замкнутого типа. Активное вещество подвергается глубокому охлаждению в микрохолодильнике. Жидкий азот из сосу­да емкостью 0,015 м3 под давлением 1 Па подается в теплообменник.

Чтобы избежать закипания на поверхности активного вещества, азот в теплообменнике переохлаждается и затем омывает кристалл. Весь комплекс системы охлаждения представляет собой стационарную установку, обеспечивающую генерацию излучения лазера с частотой следования импульсов 10 . 100 Гц при изменении температуры окру­жающей среды ± 50° С.

1.2. Замкнутые жидкостные системы охлаждения.

Для лазеров, приме­няемых в малогабаритной аппаратуре, разработана жидкостная си­стема охлаждения и жидкостная система термостабилизации с коаксиальной лампой накачки. Внутренний объем ка­меры лазера разделен коронками на две полости. Импульсная лампа накачки и кристалл омываются охлаждающей жидкостью, заполняю­щей весь внутренний объем герметичного корпуса. Тепло от кристал­ла, импульсной лампы и часть тепла от отражателя отбирается хла-доагентом, перекачиваемым насосом из одной полости в другую, а затем передается наружному корпусу. Другая часть тепла, выделяю­щегося в отражателе, передается кондуктивно, благодаря плотной посадке на корпус. Для увеличения теплообмена в корпусе сделано четыре винтовых паза, увеличивающих турбулентность потока и поверхность теплообмена. Такое конструктивное решение дает возмож­ность снизить массу и габариты, а отсутствие соединительных трубок и необходимой герметизации уплотнений обусловливает значительное повышение эксплуатационной надежности устройства и получение устойчивой генерации с частотой fг ~ 1 Гц.

1.3. Полупроводниковые системы термостабилизации.

В этих системах, работающих на эффекте Пельтье, совмещены в едином блоке осветитель камеры лазера с термоэлектрическим холодильником. Применение таких систем оправдано при холодопроизводительности термобатарей 30 .40 Вт и при температуре окружающей среды до +50° С.

К достоинствам полупроводниковых систем следует отнести небольшую массу и габариты, сравнительно малую потребляемую. мощность, возможность быстрого перехода от режима охлаждения к режиму нагрева, возможность работы в широком диапазоне окружаю­щих температур, давлений, вибраций и ускорений. Однако при холоднопроизводйтельности 150 .200 Вт и более эти системы по габари­там и энергетическим параметрам уступают жидкостным и компрес­сионным системам. Импульсная лампа и кристалл, закрепленные в осветителе, кондуктивно охлаждаются шиной, изготовленной иа красной меди. Кристалл крепится к шине через мягкую подложку из. чистого индия, допускающую пластические деформация. В отверстие шины вставлены термисторы, которые управляют электрической схемой термо­батарей. При работе лазера медная шина играет роль своеобразного аккумулятора теплоты во время генерации излучения и аккумулятора холода во время пауз между вспышками. С целью обеспечения хорошего теплового контакта между теп-лоотводящей шиной и кристаллом рубина по образующей кристалла вжигается полоска серебра шириной 2,5 .3 мм, и толщиной 50 .70 мкм. Перепады температуры на поверхности кристалла от вспышек лампы могут достигать 20° С. Наибольшее влияние на добротность резона­тора при данной системе термостабилизации оказывает нессиметрич-ная термическая деформация кристалла, имеющая характер опти­ческого клина. Полупроводниковая система термостабилизации соз­дана для лазеров, работающих с частотой повторения не более одной вспышки за 2 .5 с при q^ = 10 .15 Вт/см2. Коэффициент теплообме­на таких систем мал, и составляет 50 .100 Вт/(м2 • К).

Наконец, рассмотрим системы вихревого охлаждения, которые применимы и в нашем случае.

1.4. Вихревой воздухохолодильник.

Эффект вихревого температурного расширения сжатого газа открыт Ранком в 1931 г. С тех пор исследованию этого эффекта посвящено много работ.

Перейти на страницу:  1  2  3  4