Рентгеноструктурный и рентгеноспектральный анализ
Методы рентгеновской съёмки кристаллов.
Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.
Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾ l -длина волны или q -угол падения, должен быть переменным.
Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.
В методе Лауэ на монокристаллический образец падает пучок немонохроматических («белых») лучей (рис. 4 а). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.4 б) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.
Рис. 4. а – Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;
б – типичная лауэграмма.
Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования.
В методе порошка (рис 5.а),так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.
Рис 5.а – схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности; 4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;
б – типичная порошковая рентгенограмма (дибаеграмма).
Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием dhk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому dhk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис. 5.б). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.
Метод порошка наиболее прост и удобен с точки зрения техники экспермента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяе расшифровывать самы простые структуры.
В методе вращения (рис. 6.а) переменным параметром является угол q.
Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристалл равномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии (рис. 6.б).
Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.
Рис. 6.а – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;
2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;
б – типичная рентгенограмма вращения.
В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1¯) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.
В методе качания, который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна.
Наиболее богатую информацию дают методы рентгеногониометра. Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга (рис. 7) все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы.
Перейти на страницу: 1 2 3 4 5