Рефераты по Физике

Расчет разветвленной электрической цепи постоянного тока

Страница 7

Нагревание проводника при прохождении по нему постоянного тока можно объяснить тем, что кинетическая энергия электронов передается при столкновении ионов кристаллической решетки.

Количественную теорию движения электронов в металле можно построить на основе законов квантовой механики, класси­ческая механика Ньютона неприменима для описания этого движения. https://npftana.ru/catalog/safetytrack противоскользящий настил решетчатыи настил.

1.11. Электрический ток в электролитах. Закон электролиза

(закон Фарадея).

Растворы, проводящие электрический ток, называются электролитами. Ток в электролите обусловлен движением поло­жительных и отрицательных ионов, т.е. осуществляется ионной

проводимостью.

Электролитами являются растворы кислот, щелочей и солей, а также расплавленные соли. Электролиты иначе называют про­водниками II рода (проводники с ионной проводимостью). Про­хождение тока в электролитах связано с переносом вещества.

Ионами называют атомы или молекулы, потерявшие или присоединившие к себе один или несколько электронов. Положи­тельно заряженные ионы называют иначе катионами (ионы ме­таллов в растворах солей, водорода в растворе кислот), а отрица­тельно заряженные — анионами (ионы кислотных остатков и гидроксильной группы ОН~).

Пластины, создающие электрическое поле в электролите, на­зывают электродами. Электрод, который соединен с положитель­ным полюсом источника тока, называется анодом, а электрод, соединенный с отрицательным полюсом, — катодом. Возникно­вение ионов в электролитах объясняется процессом электролити­ческой диссоциации — распадом молекул растворенного вещест­ва на положительные и отрицательные ионы под действием растворителя. Молекулы растворяемых веществ состоят из взаи­мосвязанных ионов противоположного знака, которые удерживаются друг около друга электри­ческими силами притяжения.

Взаимодействие этих молекул с полярными молекулами рас­творителя — воды — приводит к уменьшению силы взаимодейст­вия притяжения ионов в молекулах (диэлектрическая проницае­мость воды равна 81). При хаотическом тепловом движении молекул растворенных веществ и растворителей происходят их столкновения, которые приводят к распаду молекул на отдельные разноименно заряженные ионы.

Степенью диссоциации, а называют долю молекул растворен­ного вещества, распадающихся на ионы, т.е. это отношение числа молекул п, диссоциировавших на ионы, к общему числу молекул растворенного вещества N

Степень диссоциации зависит от температуры, диэлектричес­кой проницаемости растворителя и концентрации электролита. При повышении температуры степень диссоциации возрастает, т.к. тепловое движение способствует разрыву молекул на ионы и, следовательно, концентрация ионов увеличивается. Чем больше диэлектрическая проницаемость £ растворителя, тем выше сте­пень диссоциации, поскольку сила взаимодействия ионов в моле­куле электролита в растворе уменьшена b£ раз.

Ионы разных знаков могут объединяться (рекомбинировать) в нейтральные молекулы при тепловом хаотическом движении ионов в растворе. В результате в растворе при неизменных усло­виях устанавливается динамическое равновесие между процесса­ми электролитической диссоциации и рекомбинации ионов, при котором число молекул, распадающихся на ионы в единицу вре­мени, равно числу пар ионов, которые за это время воссоединяют­ся в нейтральные молекулы- Ионы в электролитах движутся хао­тически до тех пор, пока в жидкость не опускаются электроды. Тогда на хаотическое движение ионов накладывается их упорядо­ченное движение к соответствующим электродам. В жидкости при этом возникает электрический ток.

Прохождение тока через электролит сопровождается выделе­нием на электродах составных частей растворенного вещества — электролизом. Положительно заряженные ионы (катионы) дви­жутся к катоду и приобретают на этом электроде недостающие электроны. Отрицательно заряженные ионы (анионы) отдают аноду лишние электроны. Таким образом, на аноде происходит реакция окисления, а на катоде — восстановления.

Электролизом называют процесс выделения на электродах веществ, связанный с окислительно-восстановительными реак­циями.

Количественные характеристики электролиза определяются законами электролиза (законами Фарадея).

Первый закон электролиза (первый закон Фарадея)

Масса вещества, выделившегося на электроде за время Д? при прохождении электрического тока, пропорциональна силе тока и времени.

Коэффициент пропорциональности k называется электрохи­мическим эквивалентом вещества. Он численно равен массе

вещества, которые выделяется при переносе ионами через электро­лит единичного заряда. Единица измерения электрохимического эквивалента k = [кг/Кл].

Второй закон электролиза (второй закон Фарадея) устанавливает пропорциональность между электрохимическим и химическим эквивалентом вещества:

k =1/eNa * m / n

где/; — молярная масса вещества, п — валентность, Na — число Авогадро, e— заряд электрона, m / n — химический эквивалент (или грамм-эквивалент) вещества.

Произведение заряда электрона на постоянную Авогадро носит название постоянной (числа) Фарадея:

F=e Na

Законы Фарадея можно объединить выражением:

т. = 1/F * m / n IDt

Это выражение называют объединенным законом электроли­за Фарадея.

Постоянная Фарадея численно равна электрическому заряду, который нужно пропустить через электролит для выделения на электроде массы любого вещества, равной в килограммах отноше­нию молярной массы вещества к валентности. Значение числа Фарадея в СИ:

F = 96485 Кл/моль

Электрический заряд q любого иона согласно объединенному закону Фарадея равен:

q= +- nF/ Na

Заряд одновалентного иона (л = 1) равен по абсолютному зна­чению заряду электрона:

q=e=1,602*10-19 Kл

Таким образом, любой электрический заряд является крат­ным элементарному заряду — заряду электрона е.

Электролиз широко применяется в различных электрохими­ческих производствах. Например, это электролитическое получе­ние металлов из водных растворов их солей и из расплавленных солей; гальваностегия, гальванопластика, электрополировка. Электролитическое получение металлов из водных растворов их солей может быть осуществлено рафинированием или электроэкстракцией.

Перейти на страницу:  1  2  3  4  5  6  7  8  9