Статистическая физика и термодинамика
. (11)
Определим теперь полезную внешнюю работу, производимую адиабатически изолированной системой, которую составляет тело с окружающей средой.
Изолированная система имеет постоянный объём, и по этому вся производимая ею полезная внешняя работа не связана с изменением объёма.
Обратимое изменение состояния сложной изолированной системы означает следующее. Изолированная система состоит в самом общем случае из отдельных, отличающихся друг от друга частей (например, по температуре, давлению, составу и т.д.), которые в общем случае могут быть даже не связанны между собой. Энтропия, внутренняя энергия объём системы в целом равны соответственно сумме энтропий, внутренних энергий о объёмов, составляющих систему частей. Когда температура, давление, состав или какие-либо другие свойства разных частей системы различны, то состояние системы не является, естественно, состоянием полного термодинамического равновесия и должно поддерживаться действием различных регуляторов; адиабатических перегородок, жёстких стенок, полупроницаемых перегородок и т.п. Если действие регуляторов осуществляется достаточно медленно, т.е. квазистатически, так чтобы в любой момент времени каждая из частей системы находилась в локальном равновесии, а общая энтропия и объём системы сохраняли неизменные значения, то состояние системы будет изменяться обратимым образом.
Подставив в уравнение (10) значение , равное как было сказано выше , убеждаемся, что максимальная полезная внешняя работа адиабатически изолированной системы при обратном изменении равняется убыли внутренней энергии системы:
(12)
Величина представляет собой максимальную полезную внешнюю работу адиабатически изолированной внешней системы при обратимом изменении её состояния, когда объём и энтропия системы сохраняют неизменное значение.
Из термодинамического тождества можно получить также выражение для максимально полезной внешней работы в том случае, когда при обратном изменении состояния системы не меняются величины и ;
(13)
Найдём теперь работу, производимую телом при изоэнтропическом процессе. Если состояние тела, находящегося в окружающей среде, изменяется изоэнтропически, то , и поэтому согласно уравнению (10) максимальная полезная внешняя работа тела
. (14)
Если давление тела при изоэнтропическом процессе не меняется и равняется давлению окружающей среды, т.е. , то на основании выражения (11)
(15)
Выражение (13) сохраняет свою силу и в том случае, если давление тела в начальном и конечном состояниях равно давлению окружающей среды , , а в промежуточных состояниях , т.е. тело в начальном и конечном состояниях находится в равновесии с окружающей средой, а в промежуточных состояниях равновесие между телом и средой отсутствует.
Поскольку тело вместе с окружающей средой представляет собой адиабатически изолированную систему, то уравнение (13) определяет также полезную внешнюю работу адиабатически изолированной системы при условии , .
Вычислим, далее, работу производимую телом в изометрическом процессе, когда температура тела равна температуре окружающей среды, т.е. . Если к тому же объём тела не меняется, т.е. , то согласно выражению (10)
(16)
Ясно, что при полезная внешняя работа не связана с изменением объёма тела, т.е. равна .
Выражение (14) справедливо и в том случае, когда в промежуточных состояниях и , но в конечном и начальном состояниях , .
Если неизменно давление тела, а температура тела равна температуре окружающей среды (или если в начальном и конечном состояниях , ), то
(17)
4.5. Максимальная работа
при переходе тела в состояние равновесия
с окружающей средой
Найдём максимальную полезную внешнюю работу, производимую телом над внешним объектом работы при переходе тела из начального состояния 1 (которое предполагается равновесным) в состояние 0 равновесия с внешней средой, имеющей постоянную температуру и давление . Полезная внешняя работа, производимая при обратном переходе, на основании первого и второго начал термодинамики
Перейти на страницу: 1 2 3 4 5 6 7