Рефераты по Физике

Сверхизлучение

Страница 1

В середине XX века поиск мощных источников оптического и микроволнового излучения увенчался блистательным успехом - были изобретены лазеры и мазеры. Эти приборы были предложены А.М. Прохоровым, Н.Г. Басовым и Ч. Таунсом, за что им была присуждена Нобелевскя премия 1964 года. Действие этих приборов основано на глубоких принципах квантовой физики, и прежде всего на мазерном эффекте, смысл которого заключается в следующем.

Представим себе объем, содержащий молекулы, которые обладают системой дискретных энергетических уровней, на которых располагаются электроны. Те электроны, которые «населяют» некоторый уровень 1 с энергией E1, могут самопроизвольно (как говорят, спонтанно) перейти н более низкий уровень 2 с энергией E2, излучив при этом фотон с частотой перехода

w0 = (E1 - E2) / h ,

где h – постоянная Планка. Если на молекулу падает излучение, то она может поглотить фотон с той же частотой w0. При этом электрон с нижнего уровня 2 перейдет на верхний уровень 1, забрав энергию поглощенного фотона. Число поглощенных фотонов растет пропорционально числу электронов на нижнем уровне 2 (населенности этого уровня). Наряду с процессом поглощения существует указанное еще А. Эйнштейном своеобразное явление индуцированного излучения, когда окружающее молекулу излучение не поглощается, а вызывает в дополнение к спонтанным еще и вынужденные переходы электронов с верхнего уровня на нижний 1 → 2. Появляющиеся при такого рода переходах фотоны добавляются к окружающему излучению. Вероятность индуцированных процессов пропорциональна плотности энергии этого излучения, а число излученных фотонов – произведению плотности энергии излучения на населенность верхнего состояния 1.

Из изложенного ясно, что происходит с системой молекул в том случае, ели имеет место «инверсия населенностей», то есть число электронов (населенность) N1 превышает населенность N2. В этом случае число поглощенных фотонов будет меньше , чем число испущенных за счет индуцированных переходов. В результате интенсивность излучения будет возрастать и быстро превысит тот довольно низкий уровень, которой может быть создан за счет сравнительно редких спонтанных переходов. Интенсивное излучение из системы с инверсией населенностей и составляет существо мазерного эффекта, именно такие системы молекул или твердые тела и составляют «сердце» мазеров и лазеров.

Однако мазерный эффект – это не единственный эффект, который может реализоваться в инвертированных системах. Оказалось, что существует еще одно явление – сверхизлучение, которое также использует свойства, заложенные в таких системах. На возможность существования сверхизлучения указал Р. Дике в 1945 году [1]. Эксперементы, в которых было обнаружено это явление, начались много позже, в 1973 году [2].

Схема экспериментальной установки была очень простой (рис. 1). Полый цилиндр (кювета) был заполнен газом – фтористым водородом HF. На этот цилиндр поступало излучение (накачка) от лазера на длине волны λ = 2,5 мкм. На выходе из кюветы располагался фильтр, задерживающий импульс накачки. После него был установлен детектор, фиксирующий уровень излучения из кюветы в далеком инфракрасном диапазоне. Именно на переходах 1 ↔ 2 в этом диапазоне создавалась инверсия населенностей в газе HF. Эта инверсия возникла за счет энергии мощного импульса накачки, который забрасывал электроны на уровень 1 с некоторого уровня 3, расположенного ниже уровня 2.

Что можно было ожидать при выходе из кюветы после окончания импульса накачки? Во-первых, это может быть только спонтанное излучение электронов при переходе 1 → 2 (рис. 2, а). Его интенсивность должна постепенно убывать с характерным временем T1 по мере уменьшения числа электронов на уровне 1. Направленность излучения должна отсутствовать. Во-вторых, возможна реализация мазерного эффекта с направленным вдоль цилиндра мощным и более кратковременным излучением (рис 2, б). Это излучение сначала возрастает по закону

Q = Q0exp(γt),

где t – время, Q0 – начальное значение мощности излучения, а γ – так называемый инкремент[1], а затем по мере уменьшения разности населенностей ΔN = N1 – N2 начинает убывать. Излучение практически прекращается, когда населенности выравниваются: N1 ≈ N2. Точнее, после этого убыль населенности N1 определяется в основном спонтанными процессами. Надо отметить, что переход в режим генерации интенсивного излучения становится возможным, если излучение (по крайней мере частично) задерживается в системе, а не уходит беспрепятственно из нее. Последнее достигается тем, что стенки кюветы делаются полупрозрачными (зеркальными), с некоторым коэффициентом отражения R>0. В этом случае условие генерации имеет вид

γL / c > ln R-1 » 1

(с – скорость света, L – длинна образца). Если все электроны под действием импульса накачки были заброшены на верхний уровень (N1 = N, N2 = 0), то энергия, излученная в результате мазерного эффекта, будет, очевидно, равна

ђωVN / 2 ,

где V – объем образца. Коэффициент 2 в знаменателе отражает тот факт, что действие мазерного эффекта прекращается, как только половина всех электронов перейдет на нижний уровень населенности N1 и N2 сравняются. Заметим, что длительность импульса в этом случае сравнима со временем пробега фотонов по образцу t = L / с, причем это время много больше характерного времени упругих столкновений молекул в газе T2.

И наконец, возможен третий режим – сверхизлучение (СИ). В этом случае после длительной задержки в течении времени Т3 » L / c возникает короткий мощный импульс (рис. 2, в). Его длительность t « td, T2, а энергия равна всей энергии, запасенной в системе: ћωVN. Излучение отличается высокой направленностью, его мощность Q ∞ N2. Последнее означает, что сверхизлучение обладает высокой степенью когерентности: все молекулы излучают «в фазе», т.е. при сложении электрического E и магнитного В полей в электромагнитном излучении суммарное поле пропорционально их полному числу излучающих молекул VN. Мощность излучения, которая пропорциональна векторному произведению Е х V, в этом случае зависит от N по квадратичному закону.

Перейти на страницу:  1  2  3  4