Рефераты по Физике

Транзисторы - Курсовая работа

Страница 4

Усиление мощности

Когда говорится об усилительных свойствах того или иного прибора, то обычно имеется в виду в первую очередь усиление по мощности. Количественной оценкой усилительных свойств является коэффициент усиления по мощности Кр, показывающий, во сколько раз выходная мощность Рвых больше мощности, введённой во входную цепь прибора Рвх

Мощность может выражаться через квадрат тока или напряжения. В первом случае

вых; вх

Следовательно,

где Кi – коэффициент усиления по току.

Во втором случае

следовательно,

Где - коэффициент усиления по напряжению.

В том случае, когда известна величина Кр, а требуется найти усиление по напряжению, можно воспользоваться производной формулой:

Последняя формула часто используется для оценки усиления различных каскадов на транзисторах.

Поскольку величина Кр не зависит от того, через какие именно величины U и I её находили, то можно приравнивать между собой

отсюда следует:

.

Таким образом, зная коэффициент усиления по току Кi, а также величины входного и выходного сопротивлений, можно определить усиление по напряжению или мощности.

В ряде случаев расчёт усиления по напряжению целесообразно производить по формуле:

где - крутизна входной характеристики транзистора, определяющая усилительные свойства прибора. Крутизна входной характеристики, называемая просто крутизной S, имеет размерность ток/напряжение, то есть а/в или ма/в и характеризует, насколько изменяется выходной ток усилительного прибора в амперах или миллиамперах при изменении входного напряжения на один вольт. В этом определение крутизны характеристики транзистора практически не отличается от известного определения крутизны характеристики электронных ламп.

Основное достоинство последней формулы записи усиления напряжения в простоте её написания и применения, поскольку отпадает необходимость в предварительных громоздких расчётах коэффициента усиления тока и входного сопротивления. Используя некоторые приближённые выражения для определения величины S, можно быстро и с достаточной точностью рассчитать усилительные возможности самых разнообразных транзисторных устройств.

Для анализа тех или иных транзисторных устройств, кроме знания величин и S, необходимо учитывать эквивалентную схему замещения транзистора. В эквивалентной схеме замещения наиболее существенных физических процессов определённого режима работы транзистора в данном устройстве находят отражение в виде некоторых активных и пассивных элементов как, например, генератора тока, ёмкостей и активных сопротивлений.

Эквивалентная схема, как правило, не учитывает всю совокупность физических свойств транзистора, а лишь только те из них, которые являются определяющими для данного режима работы и диапазона частот. Поэтому различаются эквивалентные схемы для усилительного режима, для режима переключения, низкочастотные, высокочастотные эквивалентные схемы и т. д.

Частотные свойства транзисторов

Приведённые выше усилительные характеристики транзисторов были получены без учёта возможного влияния ёмкостей эмиттерного перехода Сэ и коллекторного перехода Ск, что вполне допустимо при усилении частот, исчисляемых килогерцами. На более высоких частотах с этими ёмкостями приходится считаться, так как их реактивное сопротивление становится соизмеримым с активными сопротивлениями соответствующих переходов. Влияние ёмкостей переходов проявляется в уменьшении входного и выходного сопротивления, что сказывается на усилительных свойствах транзисторов. Чем выше становится частота сигнала, тем меньшим усилением обладает транзистор. Наконец, на некоторых частотах выше определённого предела, свойственного каждому типу транзисторов, усилительные свойства полностью исчерпываются. Это значит, что, начиная с некоторой частоты, усиление транзистора по мощности становится меньше единицы.

Наблюдаемое ухудшение усилительных свойств транзисторов по мере увеличения частоты сигнала физически связано со средним временем перемещения носителей электрических зарядов в базе в направлении от эмиттера к коллектору. В свою очередь, это время определяется средней скоростью и направлением движения носителей, а также толщиной базы.

Чем тоньше базы, те меньше расстояние предстоит пройти носителям, тем лучше частотные свойства транзистора. Например, предельная частота усиления по току fа изменяется обратно пропорционально квадрату толщины базы. Это значит, что уменьшение толщины базы, например, в 2 раза приводит к увеличению предельной частоты в 4 раза.

Средняя скорость движения носителей зависит от знака заряда и температуры кристалла прибора, а направлённость движения определяется электрическим полем, действующим в базе. Средняя скорость движения электронов в 2 раза выше, чем дырок. В связи с этим считается, что при прочих равных условиях транзисторы типа n – p – n должны иметь предельные частоты вдвое выше, чем p – n – p, поскольку неосновными носителями заряда в первом случае являются электроны, а во втором – дырки, имея при этом в виду область базы.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13