Сжижение газов
Для сжижения газа в промышленных масштабах чаще всего применяются циклы с детандерами (рис. 4), т. к. расширение газов с производством внешней работы — наиболее эффективный метод охлаждения.
Рис.4 Заборы из профнастила и металлического штакетника в Орле Установка заборов в Орле.
В самом детандере жидкость обычно не получают, ибо технически проще проводить само сжижение в дополнительной дроссельной ступени. После сжатия в компрессоре (1—2) и предварительного охлаждения в теплообменнике (2—3) поток сжатого газа делится на 2 части: часть М отводится в детандер, где, расширяясь, производит внешнюю работу и охлаждается (3—7). Охлажденный газ подаётся в теплообменник, где понижает температуру оставшейся части сжатого газа 1 — М, которая затем дросселируется и сжижается. Теоретически расширение в детандере должно осуществляться при постоянной энтропии (3—6). Однако из-за потерь расширение протекает по линии 3—7. Для увеличения термодинамической эффективности процесса сжижения газа иногда применяют несколько детандеров, работающих на различных температурных уровнях.
Циклы с тепловыми насосами обычно используются (наряду с детандерными и дроссельными циклами) при сжижения газа с помощью холодильно-газовых машин, которые позволяют получать температуры до 12 К, что достаточно для сжижения всех газов, кроме гелия (см. табл.). Для сжижения гелия к машине пристраивается дополнительная дроссельная ступень.
Подвергаемые сжижению газы должны очищаться от паров воды, масла и др. примесей (например, воздух — от углекислоты, водород — от воздуха), которые при охлаждении могут затвердеть и закупорить теплообменную аппаратуру. Поэтому узел очистки газа от посторонних примесей — необходимая часть установок сжижения газа.
Значения температуры кипения Ткип (при 760 мм. рт. ст.), критической температуры ТК, минимальной Lmin и действительной LД работ сжижения некоторых газов:
Газ | Ткип, К | ТК, К | Lmin, квт•ч/кг | Lд, квт•ч/кг |
Азот Аргон Водород Воздух Гелий Кислород Метан Неон Пропан Этилен | 77,4 87,3 20,4 78,8 4,2 90,2 111,7 27,1 231,1 169,4 | 126,2 150,7 33,0 132,5 5,3 154,2 191,1 44,5 370,0 282,6 | 0,220 0,134 3,31 0,205 1,93 0,177 0,307 0,37 0,04 0,119 | 1,2—1,5 0,8—0,95 15—40 1,25—1,5 15—25 1,2—1,4 0,75—1,2 3—4 ~ 0,08 ~ 0,3 |
Сжижение (конденсацию) газов возможно осуществить лишь после их охлаждения до температур, меньших Тк.
Детандер (от франц. détendre - ослаблять), машина для охлаждения газа путём его расширения с отдачей внешней работы. Детандер относится к классу расширительных машин, но применяется главным образом не с целью совершения внешней работы, а для получения холода. Расширение газа в детандере - наиболее эффективный способ его охлаждения. Детандер используется в установках для сжижения газов и разделения газовых смесей методом глубокого охлаждения, в криогенных рефрижераторах, в установках, имитирующих высотные и космические условия, в некоторых системах кондиционирования воздуха и т.д.
Наиболее распространены поршневые детандеры. и турбодетандеры :
Поршневой детандер
Поршневые детандеры - машины объёмного периодического действия, в которых потенциальная энергия сжатого газа преобразуется во внешнюю работу при расширении отдельных порций газа, перемещающих поршень. Они выполняются вертикальными и горизонтальными, одно- и многорядными. Торможение поршневых детандеров осуществляется электрогенератором и реже компрессором.
Применяются в основном в установках с холодильными циклами высокого 15-20 Мн/м2 (150-200 кгс/см2) и среднего 2-8 Мн/м2 (20-80 кгс/см2) давлений для объёмных расходов газа при температуре и давлении на входе в машину (физических расходов) 0,2-20 м3/ч.
Центростремительный реактивный турбодетандер
Турбодетандеры - лопаточные машины непрерывного действия, в которых поток проходит через неподвижные направляющие каналы (сопла), преобразующие часть потенциальной энергии газа в кинетическую, и систему вращающихся лопаточных каналов ротора, где энергия потока преобразуется в механическую работу, в результате чего происходит охлаждение газа.
Они делятся по направлению движения потока на центростремительные, центробежные и осевые; по степени расширения газа в соплах - на активные и реактивные; по числу ступеней расширения - на одно- и многоступенчатые. Наиболее распространён реактивный одноступенчатый центростремительный детандер разработанный П. Л. Капицей. Торможение турбинных детандеров осуществляется электрогенератором, гидротормозом, нагнетателем, насосом.
Перейти на страницу: 1 2 3 4 5 6