Сжижение газов
Аналогом термометрии по давлению насыщенных паров в области сверхнизких температур является измерение температуры в диапазоне 30-100 мК по осмотическому давлению 3He в смеси 3He - 4He. Абсолютная точность измерений - около 2 мК при чувствительности осмотического термометра 0,01 мК.
Криогенная техника
Криогенная техника, техника получения и использования криогенных температур, т. е. температур ниже 120 К.
Основные проблемы, решаемые криогенной техникой сжижение газов (азота, кислорода, гелия и др.), их хранение и транспорт в жидком состоянии; разделение газовых смесей и изотопов низкотемпературными методами (например, промышленное получение чистых азота, кислорода и аргона из воздуха: выделение дейтерия ректификацией жидкого водорода и т. д.); конструирование криорефрижераторов - холодильных машин, создающих и поддерживающих температуру ниже 120 К; охлаждение и термостатирование при криогенных температурах сверхпроводящих и электротехнических устройств (магнитов, соленоидов, трансформаторов, электрических машин и кабелей, узлов ЭВМ, гироскопов и т. п.), электронных приборов (квантовых усилителей и генераторов, приёмников инфракрасного излучения и т. д.), биологических объектов; разработка аппаратуры и оборудования для проведения научных исследований при криогенных температурах (криостатов, пузырьковых камер и др.).
Применение криогенных температур в ряде областей науки и техники привело к возникновению целых самостоятельных направлений криогенной техники, например криоэлектроники, криобиологии.
Физика низких температур
Применение низких температур сыграло решающую роль в изучении конденсированного состояния. Особенно много новых и принципиальных фактов и закономерностей было открыто при изучении свойств различных веществ при гелиевых температурах. Это привело к развитию специального раздела физики - физики низких температур. При понижении температуры в свойствах веществ начинают проявляться особенности, связанные с наличием взаимодействий, которые при обычных температурах подавляются сильным тепловым движением атомов. Новые закономерности, обнаруженные при низких температурах, могут быть последовательно объяснены только на основе квантовой механики.
В частности, принцип неопределённости квантовой механики и вытекающее из него существование нулевых колебаний при абсолютном нуле температуры объясняют тот факт, что гелий остаётся в жидком состоянии вплоть до 0. Наиболее ярко квантовые закономерности проявляются при низких температурах в явлениях сверхтекучести и сверхпроводимости. Изучение этих явлений составляет важную часть физики низких температур.
С 60-х гг. 20 в. открыт ряд интересных эффектов, в которых особое значение имеет пространственная когерентность волновых функций на макроскопических расстояниях (сверхпроводящее туннелирование, эффект Джозефсона).
Большое значение имеет изучение свойств жидкого 3He, который представляет собой пример нейтральной квантовой ферми-жидкости. Как теперь выяснено, при температурах около 3 мК и давлении около 34 бар 3He претерпевает фазовое превращение, сопровождающееся значительным уменьшением вязкости (переходит в сверхтекучее состояние).
Развитие физики низких температур в значительной степени способствовало созданию квантовой теории твёрдого тела, в частности общей теоретической схемы, согласно которой состояние вещества при низких температурах может рассматриваться как суперпозиция идеально упорядоченного состояния, соответствующего 0 К, и газа элементарных возбуждений - квазичастиц. Введение различных типов квазичастиц (фононы, дырки, магноны и др.) позволяет описать многообразие свойств веществ при низких температурах.
Термодинамические свойства газа элементарных возбуждений определяют наблюдаемые макроскопические равновесные свойства вещества. В свою очередь, методы статистической физики позволяют предсказать свойства газа возбуждений из характера связи энергии и импульса квазичастиц (закона дисперсии). Изучение теплоёмкости, теплопроводности и др. тепловых и кинетических свойств твёрдых тел при низких температурах даёт возможность установить закон дисперсии для фононов и др. квазичастиц. Температурная зависимость намагниченности ферро- и антиферромагнетиков объясняется в рамках закона дисперсии магнонов (спиновых волн). Изучение закона дисперсии электронов в металлах составляет ещё один важный раздел физики низких температур.
Ослабление тепловых колебаний решётки при гелиевых температурах и применение чистых веществ позволили выяснить особенности поведения электронов в металлах. Применение низких температур играет большую роль при изучении различных видов магнитного резонанса.
Охлаждение до сверхнизких температур применяется в ядерной физике для создания мишеней и источников с поляризованными ядрами при изучении анизотропии рассеяния элементарных частиц. Такие источники позволили, в частности, поставить решающие эксперименты по проблеме несохранения чётности. Низкие температуры применяются при изучении полупроводников, оптических свойств молекулярных кристаллов и во многих др. случаях.
Технические приложения низких температур.
В химической промышленности холод используют при производстве синтетического аммиака, красителей, для сжижения и разделения газовых смесей, выделения солей из растворов и т.д.
В нефтеперерабатывающей промышленности холод необходим при производстве высокооктановых бензинов, некоторых сортов смазочных масел и др.
Рост потребления искусственного холода имеет место и в газовой промышленности, например для сжижения природного газа, а также для извлечения из него в процессе первичной переработки легкоконденсирующихся фракций. Холодильные установки для химической, нефтеперерабатывающей и газовой промышленности часто достигают большой мощности (несколько Мвт) и вырабатывают холод в пределах очень широкого диапазона температур.
Искусственное охлаждение применяется и в машиностроении (например, для холодной посадки деталей), строительстве (замораживание грунтов), медицине, при сооружении искусственных катков круглогодичной эксплуатации, для опреснения морской воды и т.д.
Перейти на страницу: 1 2 3 4 5 6