Трансформатор постоянного тока
. . .
F1 = F2 +F0 (5)
где F0 — полная М. Д. С. намагничивания, затрачиваемая на проведение магнитного потока Ф0 по магнитопроводу, на нагрев и перемагничивание его.
В соответствии с этим равенство (2) примет вид
I1 ω1= I2 ω2 + I0 ω0 (6)
где I0 — ток намагничивания, создающий в магнитопроводе магнитный поток Ф0 и являющийся частью первичного тока I1. Разделив все члены уравнения (6) на ω1 получим:
. . .
I1 = I2 (ω2/ ω1) + I0 (7)
При первичном токе, не превышающем номинальный ток ТТ, ток намагничивания обычно составляет не более 1÷3 % первичного тока и им можно пренебречь. Тогда (7) будет иметь такой же вид, как (4), т. е.
I1 = I2n
Таким образом, вторичный ток трансформатора пропорционален первичному току. Из выражений (4) и (7) следует, что для понижения измеряемого тока необходимо чтобы число витков вторичной обмотки было больше числа витков первичной обмотки.
Сравнивая формулы (2) и (5), видим, что они отличаются друг от друга членом F0 (или I0ω1). Следовательно, реальный трансформатор тока несколько искажает результаты измерений, т. е. имеет погрешности.
Иногда пользуются так называемым приведением тока к первичной или вторичной обмотке. Так, например, если разделить первичный ток на коэффициент трансформации, то получим первичный ток, приведенный ко вторичной обмотке: I’0 = I1/n. Аналогично приведенный ток намагничивания будет I’0 = I0/n. Тогда получим:
. . .
I’1 = I’2 + I’0 (8)
Путем такого приведения трансформатор тока заменяется эквивалентным ТТ с коэффициентом трансформации, равным единице.
Из полученного равенства (8) следует, что часть приведенного первичного тока I’1 идет на намагничивание магнитопровода, а остальная часть трансформируется во вторичную цепь, т. е. первичный ток I’1 как бы разветвляется по двум параллельным цепям: по цепи нагрузки и цепи намагничивания. Этому соответствует схема замещения, приведенная на рис. 2, где в цепь ветви намагничивания z0 от тока I’1 ответвляется ток I’0. Остальная часть тока I’1 проходит по вторичной цепи, представляя собой вторичный ток I2. Сопротивление первичной обмотки ТТ на схеме замещения не показано, так как оно не оказывает влияния на работу трансформатора.
3. ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРА ТОКА
Для построения векторной диаграммы трансформатора тока (рис. 3), соответствующего схеме замещения на рис. 1-2, должны быть известны следующие величины:
1) число витков ω2, активное r2обм и индуктивное x2обм сопротивления (в Омах) вторичной обмотки трансформатора тока;
2) средняя длина магнитного пути lм (в метрах) и расчетное поперечное сечение SM (в м2) магнитопровода трансформатора тока;
3) материал магнитопровода и его магнитные свойства;
4) вторичная нагрузка z2н = √(r22H+x22H) представляющая собой полное сопротивление (в Омах) всех приборов и реле, включенных во вторичную цепь, а также соединительных проводов в ней; здесь x2H— активное сопротивление вторичной цепи, x2H— индуктивное сопротивление вторичной цеп
Рис. 3. Векторная диаграмма трансформатора тока
Векторную диаграмму трансформатора тока изобразим в прямоугольной системе координат. Ось абсцисс примем совпадающей с вектором вторичного тока I2. Построение векторной диаграмм производим следующим образом. От начала координат (точка O) отложим вправо вектор вторичного тока I2 (или пропорциональную ему М.Д.С. F2) и вектор активной составляющей падение напряжения на вторичной обмотке I2r2обм совпадающий по направлению с вектором тока I2. Из конца вектора I2r2обм под прямым углом к нему отложим вектор индуктивной составляющей падения напряжения на вторичной обмотке I2x2обм. Из конца этого вектора параллельно I2 отложим вектор активной составляющей падения напряжения на нагрузке I2r2H. Вектор индуктивной составляющей на нагрузке I2x2обм проводим из конца вектора I2r2H перпендикулярно ему. Результирующий вектор дает Э.Д.C. вторичной обмотки (в вольтах):
E2=I2√(r2обм + r2H)2 +( x2обм+ x2H)2 (9)
Фазовый сдвиг между вторичной Э.Д.С. I2 и вторичным током будет:
ά = arctg((x2обм+x2H)/(r2обм+r2H))
Из курса теоретических основ электротехники известно, что магнитный поток опережает создаваемую им Э.Д.С. на 90°. Магнитная индукция совпадает по направлению с магнитным потоке: Ее максимальное значение (в теслах) может быть определено по формуле:
Bmax=E2/4,44fSMω2=0,225E2/ fSMω2
где Е2 определяется по формуле (9), В; SM — расчетная площадь поперечного сечения магнитопровода, м2; f — частота тока I1, гц. Нанесем на векторную диаграмму направление векторов магнитного потока Ф0 и индукции Вmax. Зная направление этих векторов, можно построить вектор полной М.Д.С. намагничивания. Он должен опережать векторы Ф0и Вmax на угол Ψ. Этот угол, называемый углом потерь, характеризует отношение активной составляющей F0 М.Д.С. намагничивания F0 в магнитопроводе к реактивной составляющей F0p. Угол потерь можно определить по экспериментальной кривой, снятой для данного магнитного материала. Эта кривая представляет, собой зависимость угла потерь (в градусах) от магнитной индукций Ψ = f(Bmax). Для примера на рис. 4 представлена зависимость удельной М.Д.С, намагничивания Fуд и угла потерь Ψ в электротехнической стали марки 3413 от индукции Bmax.
Рис. 4. Типичные зависимости удельной М.Д.С.
и угла потерь от индукции
Абсолютное значение полной М.Д.С. намагничивания
F0 = Fуд lм,
где Fyд — удельная М. Д. С. намагничивания (приходящаяся на 1 м длины магнитного пути в магнитопроводе), А/м; lм — средняя длина магнитного пути в магнитопроводе, м.
Удельная М. Д. С. Fуд определяется по кривой намагничивания, которая представляет собой зависимость максимальной магнитной индукции от удельной М. Д. С. намагничивания Вмакс = f (FУД). Кривые намагничивания снимаются экспериментально для магнитопровода из стали данной марки.
Перейти на страницу: 1 2 3 4 5 6