Ударные волны
Содержание
Введение
1.Состояние вещества при высоких давлениях и температурах
1.1. Методы реализации высокопараметрических нагрузок
1.2.Законы сохранения
1.3.Уравнения состояния вещества
2. Ударные волны в твердых телах
2.1. Поведение твердого тела при ударно-волновом нагружении
2.2. Модели ударного сжатия для сплошных сред2.3. Фазовые превращения в твердых телах при ударно-волновом нагружении
Заключение
Литература
Введение
Ударные волны в металле всегда играли важную роль в военных и промышленных прикладных программах по крайне мере текущее столетие. Однако только в течении последнего десятилетия экспериментальные методы и аппаратура достигли достаточной степени сложности для детального исследования свойств твердого тела. Несмотря на то, что существует несколько превосходных обзорных статей по теории ударных волн, фактические результаты ударных эффектов широко рассеяны в литературе. Таким образом ученым, занятым этой проблемой, достаточно сложно следить за современным состоянием дел в этой области и быть в курсе последних достижений. Эта статья является всесторонним обзором ударных эффектов в металле на декабрь 1965 года, хотя цитируются и более поздние ссылки. В данной статье обсуждаются ударные эффекты применимо к кристаллическому твердому телу.
Прохождение ударной волны через твердое тело (и последующее снижение давления) может приводить к изменению физического состояния материала . Некоторые изменения кратковременны и должны изучаться в процессе ударного нагружения; другие изменения остаточные и могут быть изучены в сохраненном образце.
В случае остаточных ударных эффектов, один вопрос достаточно ясен; Большинство явлений ( за исключением фазовых превращений) можно объяснить в терминах микроскопической пластической деформации, произведенной ударной волной; увеличение давление и температуры при прохождении ударного фронта может помогать и наоборот препятствовать производству любого данного эффекта. Соответственно часть статьи посвящена сравнительному изучению произведенных ударных эффектов, с одной стороны, и изменений при квази-статической деформации при атмосферном давлении, с другой. Основное отличие этих двух типов экспериментов - в их характере.
Представляет интерес также то, что большинство остаточных изменений в металле, произведенных ударной волной аналогичны изменениям, произведенным холодной прокаткой.
Большую осторожность нужно проявлять приписывая какой-либо эффект действию ударного нагружения, так как возникают трудности при сохранении образца с известной историей напряжения и температуры.
Ударные волны в металле. Получение и области их приминения.
Ударные волны возникают при большом ускорении поверхности слоя металла. Способ получения таких ускорений - детонация взрывчатого вещества, находящегося в контакте с материалом либо контакт с быстролетящим снарядом. Ударный фронт математически представляет собой скачок плотности, энергии и энтропии. Физически, конечно, эти величины должны изменятся в течении времени подъема давления, определяемого такими параметрами как теплопроводность, вязкость, а также размером зерна и однородностью металла. В случае сильных ударных нагружений в однородном изотропном металле, время подъема давления не разрешимо представленными методами и может быть меньше 10-8 секунды. Для неоднородных материалов типа камней время подъема давления зависит от масштабов неоднородностей.
При низких давлениях наблюдается упругий предвестник, сопровождаемый пластической волной нагрузки. Время подъема давления разрешимо для некоторых ОЦК металлов, а также для железа и стали. Определяется возможная верхняя граница скорости деформации при конкретном ударном нагружении. Для такой двухволновой системы фронт ударной волны выражен плохо и появляется относительно большое время подъема давления. Время подъема обоих фронтов зависит от действующего давления. Для алюминия при давлении в 13 кбар Линде и Шмидт нашли, что время подъема давления для упругого предвестника примерно 10-8 сек. , а для пластического волнового фронта примерно 2*10-7 сек.
Волна уменьшающая величину напряжений называется волной разгрузки. При проходе этой волны уменьшается давление в одном участке твердого тела по отношению к другим. Процесс разгрузки является адиабатическим, и путь разгрузки обычно называется адиабатой разгрузки. Вообще волновой фронт этой волны удлиняется по мере ее распространения.
Законы Сохранения и Уравнения Состояния.
Пусть ударная волна перемещается в материале с скоростью U, ускоряя частицы до скорости u при подъеме напряжения от 0 до 1, плотности от р0 до р1 и повышение внутренней энергии от Е0 до Е1. Скорость удара может быть больше или меньше, чем скорость волны сжатия и находится в диапазоне 1-10 км/сек. Огибающая конечных состояний (локус) может быть достигнута в течении времени прохождения фронта ударной волны и однозначно характеризуется для данного материала начальным состоянием перед ударом. Эта огибающая в координатах объем-напряжение обычно называется как кривая уравнения состояния Рэнки-Гюгонио или просто кривая Гюгонио. Для вычисления температуры по кривой Гюгонио, а также при определении состояния данного материала по кривой Гюгонио, требуется уравнение состояния для этого материала. Для этого необходимо пренебречь жесткостью решетки и рассматривать данное твердое тело как жидкость, которая характеризуется только тремя термодинамическими переменными. Величина ошибки при этом приближении неизвестна, но очевидно мала для сильных ударных нагружений( см. вычисления Дюваля).
Модели сплошного ударного сжатия.
а. Гидродинамическая модель.
Для общего рассмотрения воздействия ударной волны на металлический образец можно проигнорировать влияния прочности материалов на эффекты, связанные с прохождением ударной волны в образце. Были проведены обширные измерения Гюгонио в различных металлах, результаты которых были опубликованы в отчетах научных лабораторий Лос Аламоса. Эти измерения начинаются с давлений порядка 100kbar, что на порядок выше, чем предел текучести металла и аналитически удовлетворяют данным, которые используются при интерполяции от p0 и до более высоких значениях давления. Однако следует отметить, что в данной модели Гюгонио при давлениях близких к нулю физически не определен.
Перейти на страницу: 1 2 3 4 5 6 7 8