Физика туннельного диода
где mp — эффективная масса дырки;
EV — энергия, соответствующая потолку валентной зоны.
В рассматриваемом случае концентрация (n, p) примесных носителей тока намного преобладает над концентрацией носителей, обусловливающих собственную проводимость.
Концентрации ионизированных доноров ND и акцепторов NA постоянны для данной степени легирования материала полупроводника.
Если в равенство n + NA = p + ND подставить выражения для соответствующих концентраций, то получится уравнение относительно уровня Ферми. Его решение можно найти графически, построив левую и правую части уравнения как функцию Ферми и определив точку пересечения этих двух кривых (соответствующую равенству положительных и отрицательных зарядов). Это построение выполнено на рис. 2, в для электронного и дырочного полупроводников.На энергетической диаграмме зон полупроводника вдоль горизонтальной оси отложены значения концентраций(в логарифмическом масштабе), а не пространственная координата, как обычно. Значения концентраций доноров ND и акцепторов NA изображаются прямыми линиями, не зависящими от энергии. Для построения зависимости концентрации электронов в зоне проводимости n от уровня Ферми необходимо подставить в уравнение
В логарифмическом масштабе это представляет собой прямую линию для n как функции уровня Ферми (см. рис. 2. в). Подобное же построение выполняется и для p как функции уровня Ферми. Суммарная концентрация положительных зарядов p + ND изображена на рис. 2, в сплошной жирной линией, а суммарная концентрация отрицательных зарядов n + NA − пунктирной жирной кривой. Точка пересечения кривых 1 и 2, соответствующая выполнению условия электрической нейтральности, дает положение уровня Ферми в материале при данных концентрациях примесей. Повторение подобных построений для других концентраций примесей позволяет определить зависимость положения уровня Ферми от их величины. Этим методом может быть получена и зависимость положения уровня Ферми от температуры при постоянной концентрации примесей (но уже с учетом носителей, определяющих собственную проводимость, концентрация которых зависит от температуры).
Образование p-n-перехода.
При наличии внутри одного кристалла германия соседних областей из электронного и дырочного полупроводников на границе их раздела возникает p-n-переход (рис 3), образующийся следующим образом.
Как было показано выше, материал n-типа имеет подвижные электроны и равное число фиксированных положительных ионов донорной примеси, а материал p-типа содержит подвижные положительные заряды-дырки и неподвижные отрицательные заряды в виде ионизированных атомов акцепторов. При контакте этих двух материалов с разным типом проводимости электроны из n-области будут переходить в p-область, а дырки — из p-области — в n-область вследствие разности их концентраций в этих областях. Уход электронов из приконтактной области электронного материала и дырок из приконтактной области дырочного материала приведет к обеднению этих участков подвижными носителями и появлению нескомпенсированного положительного заряда от ионизированных атомов доноров в приконтактной области л-типа материала и отрицательного заряда от ионизированных атомов акцепторов в приконтактной области материала p-типа. В результате в месте контакта образуется двойной электрический слой (рис. 3,6). Это приведет к возникновению разности потенциалов в приконтактном слое такого направления (рис. 3,в), что она будет препятствовать дальнейшему переходу подвижных зарядов из одной области материала в другую, т. е. электронов из л-типа материала в материал p-типа и дырок из p-материала в л-материал, так что в состоянии равновесия ток через p-n-переход будет равен нулю. Так как приконтактный слой обеднен подвижными носителями,то он будет обладать повышенным электрическим сопротивлением, вследствие чего получил название запирающего слоя p-n-перехода.
При подаче на p-n-переход внешнего напряжения можно управлять величиной внутренней разности потенциалов в переходе и тем самым менять условия прохождения тока через него. Если минус внешнего источника приложить к материалу л-типа, а плюс — к материалу p-типа, то величина внутреннего потенциального барьера уменьшится на величину внешнего напряжения, что создаст условия для перехода электронов и дырок в p- и n-области соответственно. Через переход потечет ток.
Данное направление называется пропускным. При смене полярности внешнего напряжения (минус к p-области, а плюс к л-области) внутренний потенциальный барьер в p-n-переходе возрастет на величину напряжения внешнего источника, что приведет к прекращению потока электронов из материала л-типа в материал p-типа и обратного потока дырок. Такое направление называется запирающим.
Энергетические диаграммы зон p-n-перехода (при отсутствии и наличии внешнего напряжения) приведены на рис. 3, е — 3, е. Состояние термодинамического равновесия электронов по обе стороны p-n-перехода характеризуется энергетическим равенством уровней Ферми в обеих частях материала. Таким образом, уровень Ферми при отсутствии внешнего смещения (см. рис. 3,г) будет одинаковым для n- и p-областей. При этом границы зон в приконтактной области изогнутся на величину контактной разности потенциалов, величина которой будет равна разности в положениях уровней Ферми в изолированных электронном и дырочном полупроводниках.
Внешнее смещение в пропускном направлении уменьшает внутренний потенциальный барьер на величину напряжения смещения (рис. 3,д), что создает условия для диффузии электронов и дырок в p- и n-области соответственно. При этом электроны из зоны проводимости n-материала попадают в зону проводимости (т. е. в ту же самую зону) p-материала, а дырки из валентной зоны p-материала попадают в валентную же зону p-материала. Этим обычный диод отличается от туннельного диода, где, как будет показано ниже, переход носителей через потенциальный барьер связан с изменением зоны их нахождения до и после перехода, что и обусловливает ряд отличительных свойств туннельного диода.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11