Физика туннельного диода
Таблица 1
Основные параметры полупроводниковых материалов и туннельных диодов, изготовленных из них
Полупроводник |
m*/m0 |
E0, эв |
I1/I2 |
U1, мв |
u3 , мв |
t*макс, °С |
R− С, сек |
I1/C, ма/пф |
Ge Si GaAs InSb GaSb |
0.l5 0.27 0.06 0.04 0.20 |
0.65 1.10 1.35 0.18 0.70 |
10 − 15 3 − 4 40−70 7 − 10 15 − 20 |
40−70 80−100 90−120 — 30−50 |
450 700 1000 200 450 |
250 400 600 25 300 |
0.5·10−9 0.2·10−8 0.1·10−9 0.5·10−11 0.1·l0−19 |
0.3 − 1 <0.5 10-15 — — |
* Температура, при которой исчезает участок отрицательного сопротивления.
Свойства туннельного диода зависят не только от степени концентрации примесей, но и от типа самого материала. Вероятность туннельного эффекта возрастет с уменьшением ширины запрещенной зоны Eg и эффективной массы m*. Поэтому для туннельных диодов желателен материал с малыми значениями Eg и m*. Но, с другой стороны, температурный диапазон работы туннельного диода пропорционален ширине запрещенной зоны исходного материала. Следовательно, нужен материал с широкой запрещенной зоной. Разрешить эти два противоречивых требования можно компромиссным путем: выбрать материал с малой величиной m и большой шириной запрещенной зоны. Сравнительные данные по величинам Eg и m* для применяемых при изготовлении туннельных диодов материалов приведены в табл.1.
Из сопоставления значений Eg и m* видно, что лучшим материалом для изготовления туннельных диодов служит арсенид галлия. Это же подтверждают и лучшие параметры, которыми обладают туннельные диоды, полученные на основе этого материала.
Следует отметить, что наилучшими высококачественными свойствами обладают туннельные диоды, изготовленные из антимонида индия. Но из-за малой ширины запрещенной зоны они не обладают туннельными свойствами даже при комнатной температуре и требуют для своей нормальной работы низких температур (температуры жидкого азота).
Наилучшими материалами для изготовления туннельных диодов, обладающих низкими собственными шумами, являются сурьмянистый галлий GaSb, антимонид индия InSb, apceнид индия InAs. Так как малая ширина запрещенной зоны InSb и InAs для нормальной работы туннельных диодов на их основе требует низких температур, то наиболее подходящим из них будет сурьмянистый галлий.
Вообще «универсального» материала, изготовленные из которого туннельные диоды обладали бы всеми оптимальными параметрами, не существует. Разделение областей применения туннельных диодов требует и дифференцирования в выборе материалов. В каждом случае примененный материал будет определять потенциальные возможности туннельного диода для соответствующей конкретной сферы использования прибора.
Поэтому интенсивное изучение новых полупроводниковых материалов приведет к дальнейшему улучшению параметров туннельных диодов, изготавливаемых из них.
Использованная литература.
1. “Туннельные диоды и их применение”, Р.В. Гострем, Г.С. Зиновьев, Новосибирск 1964
2. “Полупроводниковые диоды. Параметры, методы измерений”, под ред. Н.Н. Горюнова, Ю.Р. Носова, изд. «Совестское радио», 1968
3. “Радиотехнические схемы на транзисторах и туннельных диодах”, под ред. Р.А. Валитова, М., «Связь», 1972
4. “Импульсные преобразователи и стабилизаторы постоянного напряжения”, Ф.И. Александров и А.Р. Сиваков, изд. «Энергия» Ленинградское отделение, 1970
5. “Физика полупроводниковых приборов”, Г.А. Розман, Псков 1994.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11