Анализ и решение проблемы переноса энергии волнами электромагнитного поля
Для проводящей среды в асимптотике металлов (), как показал анализ [7], распространение волн всех четырех электродинамических составляющих реального электромагнитного поля подчиняется теоретически хорошо изученному закону для плоских волн ЭМ поля в металлах [1], где все волновые решения имеют вид экспоненциально затухающих в пространстве плоских волн со сдвигом фазы между компонентами на .
Однако вернемся к анализу энергетики распространения составляющих реального электромагнитного поля в виде плоских волн в диэлектрической среде без потерь (). Вначале обратимся к закону сохранения электрической энергии, соотношение которого согласно (10) запишется как:
.(12)
Выясним, выполняется ли это выражение для плоской монохроматической электрической волны, полевые компоненты которой, согласно волновым решениям уравнений системы (7), обладая сдвигом фазы на , имеют следующий вид: и . Тогда, подставляя их в соотношение (12), приходим к соотношению:
.
Такой результат вполне удовлетворяет закону сохранения энергии, поскольку усреднение по времени этого соотношения дает
, (13)
а потому электрическая волна действительно переносит в пространстве чисто электрическую энергию: , не зависящую от времени и точек пространства.
Соответственно, для магнитного поля, распространяющегося в однородной среде без потерь, закон сохранения магнитной энергии согласно (11) запишется в виде соотношения:
.(14)
Рассмотрим, как выполняется этот закон для плоской монохроматической магнитной волны, полевые компоненты которой, согласно волновым решениям уравнений (8), имеют следующий вид: и . Подставляя их в соотношение (14) и проводя аналогичные рассуждения как при выводе формулы (13), получаем в итоге:
. (15)
Итак, в случае магнитного поля снова приходим к физически здравому результату, когда в пространстве без потерь посредством магнитной волны переносится чисто магнитная энергия , не зависящая от времени и точек пространства. Следовательно, распространение магнитной волны также удовлетворяет закону сохранения энергии.
Таким образом, аргументированно установлено, что в Природе объективно существует сравнительно сложное и необычное с точки зрения традиционных представлений вихревое четырехвекторное поле в виде совокупности функционально связанных между собой четырех вихрево-полевых компонент , и , . Это поле, условно названное реальным электромагнитным полем, реализуется четверкой составляющих его электродинамических полей, состоящих из пар вышеуказанных компонент: электрическое поле с и , магнитное поле с и , электромагнитное поле с и , наконец, поле векторного потенциала с и . Причем способностью к непосредственному распространению в пространстве в виде волн, отвечающих обычным физическим представлениям о волновом процессе, обладают только электрическое и магнитное поля за счет наличия у этих волн сдвига фазы на между их компонентами и , соответственно, и . Реализация же собственно волн ЭМ поля и ЭМ векторного потенциала невозможна в принципе, хотя сами эти поля, как показано выше, существуют и распространяются опосредованно в виде псевдоволн, поскольку их синфазные компоненты являются составной частью компонент электрической и магнитной волн, распространяющихся обычным образом. Именно тем самым все составляющие реального электромагнитного поляобъективно перемещаются в пространстве совместно в виде единого волнового процесса.
К сожалению, в настоящее время существующими методами регистрации электродинамических полей реально можно наблюдать лишь псевдоволны “обычного” ЭМ поля, компоненты и которых синфазно распространяются в пространстве. И хотя конкретное наблюдение волн остальных обсуждаемых здесь составляющих реального электромагнитного поля только начинается (например, в [7] экспериментально исследованы условия возбуждения и распространения в металлах поперечных чисто магнитных волн), объективность их существования и неоспоримая практическая значимость подтверждается принципиальной невозможностью без их посредства реализации ряда физических характеристик и свойств ЭМ поля, в частности, его способности переноса ЭМ энергии.
Перейти на страницу: 1 2 3 4 5 6