Фотоэлектронная эмиссия - Курсовая работа
Было показано, что при наклоном падение световой волны фототок,вызываемый светом ,значительно меньше фототока, вызванного светом
º той же интенсивонсти, что и свет
.Эта зависимость фотоэффекта называется поляризационной селективностью или векториальным эффектом.
На рис.9 (а,б) показаны
Рис 9 (а)
Зависимость фотоэффекта от длины волны электрического вектора
колеблещегося в плоскости падения
Рис 9 (б)
Зависимость фотоэффекта от длины электрического вектора
колеблещегося в плоскости параллельной плоскости падения
спектральные характеристики фотоэффекта для и
º с жидкого сплава натрия и калия.Можно видеть,что спектральная селективность обусловлена
светом.Векториальный эффект существенно зависит от угла падения света.На рис. показана зависимость фототока от угла падения для света с
и
º.Следует заметить, что исследование векториального эффекта требует достаточно гладкой поверхности фотокатода, так как при наличии шероховатости поляризованный свет будет иметь различную поляризацию по отношению к плоскости падения на различно ориентированных элементах поверхности шероховатого фотокатода.Наилушими обьектами для подобых исследований являются поверхности жидких фотокатодов.Первоначальное обьяснение селективного фотоэффекта связывалость с особой ориентацией атомов в фоточувствительном слое, с ионизационными потенциалами атомов этого слоя,со специальными условиями прохождения электронов сквозь потенциальный барьер на границе и др.Существенными для понимания селективного фотоэффекта оказались работы Айвса и его сотрудников.В них было учтено то очевидное теперь положение,что фототок должен быть пропорционален не количеству световой энергии, падающей на фотокатод , и не количеству ее,поглощенному во всей толще этого катода,а количеству,поглощенному в том слое его,из которого выходят фотоэлектроны.Количество поглощеной в этом слое энергии пропорционально поглощательной способности слоя для света частоты
,используемой в опыте ,
и плотности световой энергии
в этом слое(а не потоку,падаещему наповерхность).Естественно поэтому, что лишь световое поле в этом тонком поверхностном слое и определяет силу фототока.
квантомеханическая теория фотоэффекта
Основы квантомеханической теории фотоелектронной эмиссии металлов были созданы И. Е. Таммом и С. П. Шубиным и впоследствии уточнены и дополнены Митчелом и другими исследователями . Об исходных положениях теории Тамма-Шубина-Митчела и ее результатах мы здесь скажем только очень немного .
При построении теории прежде всего надо было выяснить , каким образом свободные электроны металла могут поглащать фотоны. Дело в том , что совершенно не связанный электрон не может целиком поглотить фотон , так как при этом нельзя одновременно удовлетворить законам сохранения энергии и сохранения импульса .
Например , для наиболее простого сучая поглощения фотона покоящимся электроном эти два закона можно записать так
где v – скорость электрона после акта поглащения. Но эти два уравнения несовместимы при любых v<c ,откуда и следует , что фотоэлектрическое поглащение(так можно назвать случай , когда фотон поглащаетсся целиком ) фотона электроном ,несвязанным ни с каким третьим телом ,невожможно. Это можно показать и в общем случае.
Но фотоэлектрическое поглощение возможно для электронов связанных в атоме или кристале . В частности , связью для свободных электронов металла служит их взаимодействие с периодическим полем внутри кристалла и с полем в поверхностном слое , т.е. с поверхностным потенциальным барьером. Соответственно этим двум видам связи фотоэлектронная эмиссия разделяется на поверхностную , возниккающую в граничном слое толщиной порядка 10 -7см, и объемную , возникающую внутри решотки кристалла.Расчет показал, что фотоэлектронной эмиссии металла главную роль играет поверхностная компонента , несмотря на то , что с поверхностном слое поглащается только очень небольшая доля энергии подуюшего света .Что же касается объемной компоненты эмиссии, то она делается заметной только при частотах, много больших граничной . Экспериментальное подтверждение этого результата теории можно видеть в опытах по определению глубины зарождения фотоэлектронов . Если измерять фототок с пленок металла различной толщины (толщина пленки увеличивается путем осаждения на нее новых слоев металла ) , то оказывается , что, начиная с толщины в 10-15 атомных слоев , как фототок , так и распределение скоростей фотоэлектронов перестают зависеть от толщины пленки , оставаясь такими же , как для массивного металла . В то же время свет проникает в металл гораздо глубже , так как пленки толщиной даже в 100 атомных слоев еще проницаемы для света . Это доказывает , что подавляющее большинство фотоэлектронов зараждается в поверхностном слое металла . Теория Тамма - Шубина - Митчелла позволяет вычислить фотоэлектронный ток , найти его зависимость от поляризации и определить вид спектральной характеристики , а также распределение скоростей фотоэлектронов . Качественное совпадение с экспериментом во всех отношениях получается хорошее , и в некоторых случаях можно говарить даже о количественном соответствии теории и эксперимента .Следует отметить,что оптические свойства металлов недостаточно изучены и это припятствует получению хороших количественных результатов.
Перейти на страницу: 1 2 3 4 5 6 7 8 9